
Developer's Guide and Technical Reference
Version 4.0

Copyright © 2002, Catalyst Development Corporation. All rights reserved.
Catalyst Internet Mail is a trademark of Catalyst Development Corporation.

Copyright.. 5
License Agreement... 5
Developer’s Guide .. 9

Introduction ... 9
Protocol Standards ... 9
Licensing and Redistribution... 10
System Requirements ... 10
Control Redistribution ... 10
Version Information .. 11
Installation Directory .. 11

Internet Mail Overview... 11
Composing Messages .. 11
Sending Messages .. 15
Mail Exchanges .. 15
Relay Servers .. 16
Retrieving Messages ... 17

QuickStart Guide... 20
Sending Text Messages ... 20
Message Delivery Events ... 22
Sending HTML Messages.. 22
Attaching Files ... 24
Importing Messages.. 25
Exporting Messages .. 27
Extracting Attachments ... 28
Message Headers ... 29
Retrieving Messages ... 30
Deleting Messages.. 33

Programming with Visual C++ .. 33
Microsoft Foundation Classes.. 34
Instantiating CWnd Based Controls ... 35
Importing ActiveX Controls .. 36
Component Object Model API ... 39
Control Event Handling.. 42

Technical Information ... 45
Technical Reference ... 46

Properties .. 47
Attachment Property... 47
Bcc Property .. 47
Cc Property ... 48
CertificateExpires Property... 48
CertificateIssued Property.. 49
CertificateIssuer Property .. 49
CertificateName Property... 51
CertificateStatus Property .. 52
CertificateStore Property ... 53
CertificateSubject Property .. 53
CipherStrength Property .. 54
ContentID Property... 55
ContentLength Property... 55
ContentType Property ... 56
Date Property .. 57
Domain Property .. 58

Encoding Property .. 58
From Property.. 59
HashStrength Property .. 59
LastError Property .. 60
LastErrorString Property .. 60
LastMessage Property ... 61
Library Property ... 61
LocalAddress Property... 62
Localize Property .. 62
LocalName Property.. 63
MailboxSize Property... 63
Mailer Property... 64
Message Property ... 64
MessageCount Property ... 65
MessageID Property.. 65
MessageIndex Property ... 66
MessagePart Property ... 66
MessageParts Property .. 67
MessageSize Property ... 67
MessageText Property ... 68
MessageUID Property.. 68
NameServer Property.. 69
Options Property .. 69
Organization Property ... 70
Password Property.. 71
Priority Property ... 71
Recipient Property .. 72
Recipients Property... 73
RelayServer Property .. 73
RelayPort Property.. 74
ReplyTo Property.. 74
ReturnReceipt Property ... 75
Secure Property ... 75
SecureCipher Property .. 77
SecureHash Property .. 78
SecureKeyExchange Property ... 78
SecureProtocol Property .. 79
ServerName Property.. 80
ServerPort Property .. 80
Subject Property .. 81
ThrowError Property ... 82
Timeout Property.. 82
TimeZone Property ... 83
To Property ... 83
Trace Property ... 84
TraceFile Property... 85
TraceFlags Property .. 86
UserName Property... 87
Version Property... 87

Methods... 88
AppendMessage Method .. 88
AttachFile Method... 88
Cancel Method ... 89

ChangePassword Method ... 90
ComposeMessage Method .. 91
Connect Method ... 94
ClearMessage Method ... 95
CreatePart Method.. 96
DeleteHeader Method.. 98
DeleteMessage Method.. 98
DeletePart Method .. 99
Disconnect Method ... 99
ExportMessage Method...100
ExtractFile Method...100
GetFirstHeader Method...101
GetHeader Method...102
GetNextHeader Method ..102
GetMessage Method...103
ImportMessage Method ..104
Initialize Method..104
ParseAddress Method...106
ParseMessage Method ..107
Reset Method..108
SendMessage Method...108
SetHeader Method ...110
StoreMessage Method ..110
Uninitialize Method ..111

Events ..113
OnCancel Event...113
OnDelivered Event...113
OnError Event...114
OnProgress Event ..114
OnRecipient Event ...115
OnTimeout Event...115

Error Codes ...116

Copyright © 2002 Catalyst Development Corporation. All rights reserved.

Catalyst Development Corporation™, the Catalyst logo and Catalyst Internet Mail™ are trademarks of
Catalyst Development Corporation. Microsoft®, Windows™, Windows NT™ and Visual Basic™ are
trademarks or registered trademarks of Microsoft Corporation.

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Catalyst Development Corporation.

The software described in this document is furnished under a license agreement. The software may be
used only in accordance with the terms of the agreement. It is against the law to copy the software
except as specifically allowed in the license agreement. No part of this document may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the purchaser's
personal use, without the express written permission of Catalyst Development Corporation.

Catalyst Internet Mail License Agreement

This License Agreement is a legal agreement between you, either as an individual or a single entity
("Developer"), and Catalyst Development Corporation ("Catalyst") for the software product identified
as "Catalyst Internet Mail". The Software Product includes executable programs, redistributable
modules, controls, and dynamic link libraries ("Components" or "Software Components"), electronic
documentation, and may include associated media and printed materials.

Installing this Software Product onto a hard disk or any other storage device of a computer, or loading
any of the Components into the memory of any computer, constitutes use of the Software and shall
acknowledge your acceptance of the terms and conditions of this License Agreement and your
agreement to be bound thereby.

1. GRANT OF LICENSE
Catalyst Development grants you as an individual, a personal, non-exclusive, non-transferable license
to install the Software Product using an authorized serial number. If you are an entity, Catalyst grants
you the right to appoint an individual within your organization to use and administer the Software
Product subject to the same restrictions enforced on individual users. You may not network the
Software or otherwise use it on more than one workstation or computer at the same time. Contact
Catalyst for more information regarding multi-developer site licensing.

You may install the Software Product on one or more workstations or computers expressly for the
purposes of evaluating the performance of the Software for a period of no more than thirty (30) days.
If continued use of the Software is desired after the evaluation period has expired, then the Software
Product must be purchased and/or registered with Catalyst Development for each developer. The
Software Product must be removed from all unregistered workstation(s) or computer(s) after the
evaluation period has expired. You acknowledge that there is no product evaluation period available
for Software source code.

2. COPYRIGHT
Except for the licenses granted by this agreement, all right, title, and interest in and to the Software
Product (including, but not limited to, all copyrights in any executable programs, modules, controls,
libraries, electronic documentation, text and example programs), any printed materials and copies of
the Software Product are owned by Catalyst Development. The Software Product is protected by
copyright laws and international treaty provisions. Therefore you must treat the Software Product like
any other copyrighted material except that you may (a) make one copy of the Software solely for
backup or archival purposes, or (b) transfer the Software to a single hard disk, provided you keep the
original solely for backup or archival purposes. You may not copy any printed materials that may
accompany the Software Product.

3. REDISTRIBUTION
a) In addition to the rights granted in Section 1, Catalyst Development grants you the right to use and
modify the source code version of those portions of the Software designated as "sample code" for the
sole purposes of designing, developing, and testing your software product(s), and to reproduce and
distribute the sample code, along with any modifications thereof, only in object code form, provided
that you comply with Section 3.c.

b) In addition to the rights granted in Section 1, Catalyst Development grants you a non-exclusive,
royalty-free right to reproduce and distribute the object code version of any portion of the Software
Product, along with any modifications thereof, in accordance with the above stated conditions.

c) If you redistribute the sample code or redistributable components, you agree to: (i) distribute the
redistributables in object code only, in conjunction with and as a part of a software application product
developed by you which adds significant and primary functionality to the Software; (ii) not use
Catalyst Development's name, logo, or trademarks to market your software application product; (iii)
include a valid copyright notice on your software product ; (iv) indemnify, hold harmless, and defend
Catalyst Development from and against any claims or lawsuits, including attorney's fees, that arise or
result from the use or distribution of your software application product; (v) not permit further
distribution of the redistributables by your end user.

4. SOURCE CODE
If you obtain a license to any of the Software’s source code (also referred to as "Software" for the
purposes of this entire agreement) neither the source code nor modified source code may be
distributed by you to any third party under any circumstances. The Software source code must be
protected as you would your own and you expressly and unequivocally agree to be bound by the acts
of your employees and agents and the terms of the TRADE SECRETS AND CONFIDENTIALITY section
below.

a) Catalyst Development retains all right, title and interest in and to the Software Product source
code. Licensing of the Software source code does not constitute a transfer of ownership under the
terms of this agreement, and the Software remains owned and copyrighted by Catalyst Development.

b) The Software source code may only be installed on a single computer for use by a single developer.
If you are an entity, Catalyst Development grants you the right to appoint an individual within your
organization to use and administer the Software source code subject to the same restrictions enforced
on individual users.

c) You may modify the Software source code, however such modifications do not constitute ownership
of the source code. Modifications to the Software source code may not be sold, transferred or
published in any manner whatsoever.

d) You may redistribute object code only, in conjunction with and as a part of a software application
product developed by you which adds significant and primary functionality to the Software. You may
not use the Software source code to create a library, control or component, or a collection of
components, for distribution as a product. You may not redistribute the original or modified Software
source code.

e) You acknowledge that the Software source code is licensed "AS-IS", without warranty of any kind,
and agree that Catalyst Development is under no obligation to provide technical support for any
original or modified Software source code. You further acknowledge that Catalyst Development may
modify the Software source code in the future and is not required to provide you with those
modifications under the terms of this agreement.

5. TRADE SECRETS AND CONFIDENTIALITY
a) The Software contains information or material which is proprietary to Catalyst Development
(“Confidential Information”), which is not generally known other than by Catalyst, and which you may
obtain knowledge of through, or as a result of the relationship established hereunder with Catalyst.
Without limiting the generality of the foregoing, Confidential Information includes, but is not limited
to, the following types of information, and other information of a similar nature (whether or not
reduced to writing or still in development): designs, concepts, ideas, inventions, specifications,
techniques, discoveries, models, data, source code, object code, documentation, diagrams, flow
charts, research, development, methodology, processes, procedures, know-how, new product or new
technology information, strategies and development plans (including prospective trade names or
trademarks).

b) Such Confidential Information has been developed and obtained by Catalyst by the investment of
significant time, effort and expense, and provides Catalyst with a significant competitive advantage in
its business.

c) You agree that you shall not make use of the Confidential Information for your own benefit or for
the benefit of any person or entity other than Catalyst, except for the expressed purposes described in
the paragraph hereof entitled "REDISTRIBUTION", in accordance with the provisions of this
Agreement, and not for any other purpose.

d) You agree to hold in confidence, and not to disclose or reveal to any person or entity, the Software,
other related documentation, your product Serial Number or any other Confidential Information
concerning the Software other than to such persons as Catalyst shall have specifically agreed in
writing to utilize the Software for the furtherance of the expressed purposes described in the
paragraph hereof entitled "REDISTRIBUTION", in accordance with the provisions of this Agreement,
and not for any other purpose.

e) You acknowledge the purpose of this section entitled "TRADE SECRETS AND CONFIDENTIALITY" is
to protect Catalyst Development’s ability to limit the use of the data and the Software generally to
licensees, and to prevent use of Confidential Information concerning the Software by other developers
or vendors of software.

6. OTHER RESTRICTIONS
You may not rent, lease or transfer the Software. You may not reverse engineer, decompile or
disassemble the Software, except to the extent applicable law expressly prohibits the foregoing
restriction. Without prejudice to any other rights, Catalyst Development may terminate this License
Agreement if you fail to comply with the terms and conditions of the agreement. In such event, you
must destroy all copies of the Software Product.

7. LIMITED WARRANTY
If within 30 days of your purchase of this software product, you become dissatisfied with the Software
for any reason, you may return the software to Catalyst Development (or your dealer, if you did not
purchase it directly from Catalyst) for a refund of your purchase price. To return the Software, you
must contact Catalyst Development and obtain a return material authorization (RMA) number.
Catalyst will not accept returns of opened or installed software without an RMA number. Returns are
subject to the deduction from your purchase price of a 20% restocking fee and all shipping costs. You
agree that this limited warranty does not apply to a Software source code license as specified in
section 4.e.

8. NO OTHER WARRANTIES
CATALYST DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY
ACCOMPANYING HARDWARE.

9. LIMITATION OF LIABILITY
IN NO EVENT SHALL CATALYST OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITH LIMITATION, INCIDENTAL, CONSEQUENTIAL, SPECIAL, OR EXEMPLARY DAMAGES
OR LOST PROFITS, BUSINESS INTERRUPTION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OR INABILITY OF THIS CATALYST PRODUCT, EVEN IF CATALYST HAS BEEN ADVISED OF SUCH
DAMAGES.

APART FROM THE FOREGOING LIMITED WARRANTY, THE SOFTWARE PROGRAMS ARE PROVIDED "AS-
IS", WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. THE ENTIRE RISK AS TO
THE PERFORMANCE OF THE PROGRAMS IS WITH THE PURCHASER. CATALYST DOES NOT WARRANT
THAT THE OPERATION OF THE PROGRAMS WILL BE UNINTERRUPTED OR ERROR-FREE. CATALYST
ASSUMES NO RESPONSIBILITY OR LIABILITY OF ANY KIND FOR ERRORS IN THE PROGRAMS OR
DOCUMENTATION, OF/FOR THE CONSEQUENCES OF ANY SUCH ERRORS. THE LAWS OF THE STATE
OF CALIFORNIA GOVERN THIS AGREEMENT.

10. GOVERNMENT-RESTRICTED RIGHTS
U.S. Government Restricted Rights. The Software and related documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to the restrictions
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software -
Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer for such purposes is Catalyst
Development Corporation, 56925 Yucca Trail, PMB254, Yucca Valley, CA 92284

11. EXPORT CONTROLS
If the Software is for use outside the United States of America, you agree to comply with all relevant
regulations, including but not limited to those, of the United States Department of Commerce and with
the United States Export Administration Act to insure that the Software is not exported in violation of
United States law.

12. GOVERNING LAW
This License is governed by the laws of the State of California, without reference to conflict of laws
principles. The exclusive jurisdiction and venue for any action arising from or relating to this
agreement shall be in a court of competent jurisdiction in San Bernardino County, California. In
addition to any other relief granted the prevailing party shall be entitled to recover its attorney’s fees
and costs. THE PARTIES EXPRESSLY WAIVE THE RIGHT TO A TRIAL BY JURY. The parties acknowledge
that any breach of this agreement may result in irreparable harm to Catalyst Development
Corporation, thereby entitling Catalyst to injunctive relief for any such breach in addition to any other
rights or remedies that Catalyst may have. This Agreement is the entire agreement between you and
Catalyst and supersedes any other communications or advertising with respect to the Software and
documentation. If any provision of this License is held invalid, the remainder of this License shall
continue in full force and effect.

Catalyst Internet Mail 4.0 Developer’s Guide

―Introduction―

Electronic mail is the most prevalent application in computer networking and its use has evolved
beyond the simple exchange of text messages between two people. For the developer, e-mail provides
a reliable means for sending and receiving messages where the protocols are based on well-known
and widely used standards. The Catalyst Internet Mail control provides an interface to e-mail services,
allowing developers to easily implement this functionality in their own software without requiring
general knowledge of network programming or specific application protocols.

The Internet Mail control provides a single interface for composing, sending and retrieving e-mail
messages. Instead of using separate controls to format, retrieve and send messages, the developer
can use a single Internet Mail control for much of the same functionality without the inherent
complexity and coding. For most applications, this is the only control that will be needed to process e-
mail messages. However, in some cases a program may require the advanced features of a specific
SocketTools control, such as sending extended authentication commands or server-specific options. In
this situation, the Internet Mail control can be seamlessly integrated with the other SocketTools
controls to build a more complex solution that requires a greater degree of customization.

The control is implemented as a standard COM object and is designed to be used in visual
development tools as well as various scripting environments. Any programming language which can
host ActiveX controls or create instances of a COM object should be capable of using the Internet Mail
control, such as Visual Basic, Visual C++, Visual FoxPro and Delphi. Server and client-side scripting is
also supported using languages such as VBScript and JScript. The control is completely self-contained
and does not require developers to redistribute the Microsoft Foundation Classes (MFC) or Visual C
runtime libraries, nor any other third-party library.

Protocol Standards

There are five core standards which form the foundation for sending and receiving e-mail messages
over the Internet and corporate intranets. These standards are defined in documents called RFCs
(Request For Comments) which describe how the various protocols should be implemented. The
following standards were used when implementing the Internet Mail control:

RFC 822 documents the basic structure of e-mail messages, including how messages should be
formatted and what the standard message header fields are. RFC 2045 documents Multipurpose
Internet Mail Extensions (MIME), which details how more complicated messages are structured. File
attachments, HTML formatted messages and other more complex aspects of message composition are
covered by the MIME standard. The Internet Mail control supports both RFC 822 and MIME formatted
e-mail messages, including multipart messages which contain alternate text and file attachments.

RFC 1939 documents the Post Office Protocol (POP3) which is used to retrieve messages from a user's
mailbox on a server. The Internet Mail control uses this protocol to enable applications to list, retrieve
and delete messages.

RFC 821 documents the Simple Mail Transfer Protocol (SMTP) which is used to deliver messages to
one or more recipients. RFC 1869 documents extensions to the protocol which provide additional
services such as delivery status notification and authentication. The Internet Mail control implements
both the standard and extended SMTP protocols.

Licensing and Redistribution

The Catalyst Internet Mail license permits the use of the control to build application software and
redistribute that software to end-users. There are no restrictions on the number of products in which
the control may be used. However, if it has been installed with an evaluation license, any products
built using it cannot be redistributed to another system until a licensed copy of the toolkit has been
purchased and registered.

System Requirements

The Catalyst Internet Mail control is designed for the 32-bit Windows platform, and is supported on
Windows XP, Windows 2000, Windows NT 4.0, Windows ME and Windows 98. For Windows 98 and
Windows ME, it is recommended that the system have at least 32 MB of physical memory. For
Windows NT 4.0, it is recommended that the system have at least 64 MB of physical memory and it is
required that the system have Service Pack 6 (SP6) installed. For Windows 2000 and Windows XP, it is
recommended that the system have at least 128 MB of physical memory. It is recommended that
Windows 2000 have at least Service Pack 2 (SP2) installed, but this is not a requirement.

Control Redistribution

For those applications created using the Internet Mail control, the CSIMXCTL.OCX file must be
distributed along with the application and the control must be registered by the installation program.
The process of registration means that specific entries must be created in the system registry which
provide information about the control such as the location of the OCX file. Fortunately, ActiveX
controls are self-registering which means that the control has the ability to create or update those
registry entries itself.

To take advantage of this, the installation program must be capable of loading the control and calling
those functions inside the control which update the registry. Most modern installation tools are
capable of registering ActiveX controls. For in-house setup programs, refer to the technical article on
ActiveX Control Registration on the Microsoft Developers Network CD.

It is possible to register ActiveX controls manually without the use of an installation program. This
may be desirable in those situations where an application is being deployed internally or the developer
does not want to create a setup program for a limited distribution. The tool used to manually register
a control is named regsvr32 and can be obtained from a number of places including the Visual Basic
or Visual C++ CD-ROM. This utility accepts a command line argument which specifies the name of the
control to register. For example:

C:>REGSVR32 C:\WINDOWS\SYSTEM\CSIMXCTL.OCX

A message box would be displayed indicating that the control was registered successfully. To prevent
the message box from being displayed, use the /S option which tells the utility to function silently. If
an error is reported, typically the reason is that a required system DLL is missing or out of date. Note
that the above command should reference the system32 directory, instead of system, if being used
under Windows NT.

Version Information

The Internet Mail control has embedded information which provides version information to an
installation utility. This information called the version resource, specifies the control's version number
among other things. If you are using a third-party or in-house installation program, it is extremely
important that the program knows how to use this information.

For example, if you are deploying an application which uses the control, the setup program must
determine if it has already been installed on the target system. If it has, it must compare the version
resource information in the two files. It should only overwrite the control if the version that you have
included with your application is later than the one installed on the system. An installation program
which overwrites the file without checking the version number may cause other programs to fail
unexpectedly on the end-user's system, which is obviously not desirable.

Installation Directory

The Internet Mail control should be installed in the system directory on the local machine. Note that
under Windows NT/2000/XP, the system32 directory should be used instead, since that is where 32-
bit controls and support libraries are installed. Some developers may prefer to install the library along
with their application in a private directory. It is not recommended that developers take this approach
because the full pathname of the control file is stored in the system registry when it's registered. If
multiple applications install the same control in different directories, the actual control that will be
used is the one that was last registered. This means that it is possible that an application will load an
earlier version of the control than it was built with, which may result in unexpected or fatal errors.

―Internet Mail Overview―

The Internet Mail control has properties and methods which are generally used to perform three basic
functions: composing messages, retrieving messages from a mail server, and sending messages to
one or more recipients. The interface is designed to be simple and intuitive, yet flexible enough to
handle a wide variety of development needs. Everything is centered around the concept of a current
message, with various attributes accessible through the control's properties. The structure of the
message can be examined or changed dynamically using various properties and methods. The current
message can be changed either by composing a new message, importing a message from a file, or by
retrieving a message from a mail server. The message can then be sent to one or more recipients,
either based on a specific list of addresses or using the addresses that have been included in the
message itself.

Composing Messages

Many of the control properties are designed to give the developer access to the internal structure of
the current message. To understand how these properties can be used, it's useful to understand how a
message is actually formatted. Here is an example of a simple, plain text e-mail message:

From: John Doe <johndoe@company.com>
To: Jane Doe <janedoe@company.com>
Date: Mon, 1 Jul 2002 12:00:00 -0800 (PST)
Subject: Meeting scheduled for next week
Message-ID: <20020601200000.15637@mail01.company.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=us-ascii

I wanted to confirm that you would be able to attend the meeting.
If there are any scheduling conflicts, please let me know.

The first thing that is apparent is that the message has two discrete sections. The first section consists
of one or more header fields, followed by a colon and then a value. The second section contains the
body of the message, with the headers and body separated by a single blank line.

Therefore, using this example message, reading the control's From property would return the string
"John Doe <johndoe@company.com>", which is the address of the person who sent the message. To
change the From header field, simply set the From property to a new string value.

The following is a complete list of properties that can be used to read, create or modify a message:

Property Description
Attachment The name of a file attachment in the current message part.
Bcc One or more message recipients (blind carbon copy).
Cc One or more message recipients (carbon copy).
Content-ID The content identifier for the current message part.
ContentLength The size of the current message part in bytes.
ContentType The content type for the current message part.
Date The date for the current message.
Encoding The encoding type for the current message part.
From The sender of the message.
Localize Enable or disable message localization.
Mailer The name of the application that generated the message.
Message The complete message, including headers and body.
MessageID A unique identifier string from the current message.
MessagePart The current message part in a multipart message.
MessageParts The number of parts in a multipart message.
MessageSize The size of the current message in bytes.
MessageText The text in the current message part.
Organization The name of the sender's organization or company.
Priority The current message priority.
Recipient The address of one of the message recipients.
Recipients The number of recipients for the current message.
ReplyTo The address to which replies should be sent.
ReturnReceipt The address to which a return-receipt message should be sent.
Subject The subject of the current message.
TimeZone The current timezone offset for the local system.
To One or more message recipients.

Most of the message-related properties correspond to specific header fields, such as To, From and
Subject. Reading those properties return their respective header values while setting them changes
their value in the current message.

For more complex message processing such as attaching files or creating multipart messages, there
are a number of additional methods which can be used to manage the current message:

Method Description
AppendMessage Append text to the current message.
AttachFile Attach a file to the current message.
ComposeMessage Compose a new message.
ClearMessage Clear the contents of the current message.
CreatePart Create a new message part in a multipart message.
DeleteHeader Delete a header from the message.
DeletePart Delete a message part.
ExportMessage Export the complete message to a text file.
ExtractFile Extract a file attachment.
GetFirstHeader Return the first header in the current message part.
GetHeader Return the value of a specified header field.
GetNextHeader Return the next header in the current message part.
ImportMessage Import a message from a text file.

ParseMessage Parse a string, adding the contents to the current message.
SetHeader Set the value of the specified header field.

The header related methods such as GetHeader and SetHeader, enable an application to read,
create or modify any header field regardless of whether or not there is a predefined property value for
it. Because there can be a potentially unlimited number of header fields in a message, these methods
give the developer more control over the header portion of the message.

New messages can be created by setting properties which comprise the message. Here is an example
of some Visual Basic code which would create a short message:

InternetMail1.From = "johndoe@company.com"
InternetMail1.To = "janedoe@company.com"
InternetMail1.Date = Date
InternetMail1.Subject = "This is the message subject"
InternetMail1.MessageText = "This is an example of a new message"

The resulting message would look like this:

From: johndoe@company.com
To: janedoe@company.com
Date: Fri, 01 Nov 2002 12:00:00 -0800
Subject: This is the message subject
MIME-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

This is an example of a new message

Note that in addition to those properties that were set, there were a number of additional header fields
such as MIME-Version and Content-Type that were automatically created.

Although setting properties is one way to create a new message, it involves writing a fair amount of
code. There is a simpler way to do it using a single method called ComposeMessage. The equivalent
code would look like this:

InternetMail1.ComposeMessage "johndoe@company.com", _
"janedoe@company.com", , , "This is the message subject", _
"This is an example of a new message"

Once the message has been created, it can be further modified by setting properties or calling
methods such as SetHeader.

Now that a simple message has been created, let's attach a file to the message. This can be easily
done using the AttachFile method:

InternetMail1.AttachFile "c:\temp\image.gif"

Although this is a simple operation, it makes some significant changes to the message (some portions
of the attachment data has been omitted):

From: johndoe@company.com
To: janedoe@company.com
Date: Fri, 01 Nov 2002 12:00:00 -0800
Subject: This is the message subject
MIME-Version: 1.0
Content-Type: multipart/mixed;
 boundary="----=_ST4020_0001_0BCF2D17_179E5A2E"
Content-Transfer-Encoding: 7bit

This is a multi-part message in MIME format.

------=_ST4020_0001_0BCF2D17_179E5A2E
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

This is an example of a new message
------=_ST4020_0001_0BCF2D17_179E5A2E
Content-Type: image/gif
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="image.gif"
Content-Length: 6434

R0lGODlhRgEyAPcAAJaWqqKitp6esqamuqamtrKywq6uvsrK176+yrq6xra2wsbG0sLCztLS
287O18LCytvb49fX38rK0sbGzt/f5/f3+/Pz9+/v8+vr7+fn6+Pj59/f49vb311hil1hhmFl
uXvrtV8rFWQ7l2qbuZJrt3rLFomrFovruRRhq4bbuZwbu1hLubBbuZF7tn7WuE2RurLWu7DL
u3nrt7Kbr3LbM+Pnu6hrFC2atcfburarucL7uY/Lurl7uVpLu5CLvJyLu9obvZO7u900W7jA
K7jkW72maxHGC72kWxbAu7xuq77DS7ip67qgl77va73fqxGryxDMK7/m67zgixEBAQA7

------=_ST4020_0001_0BCF2D17_179E5A2E--

The message has now become a multipart message that contains both human-readable text as well as
data for the file attachment. Rather than having a single group of headers followed by a message
body, the message is now broken into sections, each with its own group of headers and body. Each of
these sections are called a message part, and can be accessed individually using the MessagePart
property. Each message part is identified by a part number which starts at zero and increases for each
subsequent part. Part 0 of this message consists of the following:

From: johndoe@company.com
To: janedoe@company.com
Date: Fri, 01 Nov 2002 12:00:00 -0800
Subject: This is the message subject
MIME-Version: 1.0
Content-Type: multipart/mixed;
 boundary="----=_ST4020_0001_0BCF2D17_179E5A2E"
Content-Transfer-Encoding: 7bit

This is a multi-part message in MIME format.

Part 0 of any message always refers to the headers and body of the main message. In the previous
message, part 0 contains the entire message. Here, part 0 consists primarily of headers and a brief
message that this is now a multi-part message. This is automatically done for the benefit of older mail
clients which may not understand a MIME formatted message, so the user has a message that at least
identifies what the message is. Another thing that has changed is the value of the Content-Type
header. In the previous message it had a value of "text/plain; charset=us-ascii" which tells the mail
client that this is a plain text message. With the file attachment, this has changed to a type called
"multipart/mixed" which indicates that the message contains multiple parts with mixed types of
information. The boundary value is what is used to actually designate the different parts of the
message. As the message is being processed, the mail client knows that it has found a new message
part when the boundary string is encountered.

The next part of the message, part 1, contains the message that was in the original version of the
message:

Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

This is an example of a new message

Note that the content type is back to plain text, just as it was with the original. When a mail client
processes a message, it scans the message for plain text message parts which contain information to
be displayed to the user.

The last part of the message, part 2, contains the actual file data that was attached to the message:

Content-Type: image/gif
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="image.gif"
Content-Length: 6434

R0lGODlhRgEyAPcAAJaWqqKitp6esqamuqamtrKywq6uvsrK176+yrq6xra2wsbG0sLCztLS
287O18LCytvb49fX38rK0sbGzt/f5/f3+/Pz9+/v8+vr7+fn6+Pj59/f49vb311hil1hhmFl
uXvrtV8rFWQ7l2qbuZJrt3rLFomrFovruRRhq4bbuZwbu1hLubBbuZF7tn7WuE2RurLWu7DL
u3nrt7Kbr3LbM+Pnu6hrFC2atcfburarucL7uY/Lurl7uVpLu5CLvJyLu9obvZO7u900W7jA
K7jkW72maxHGC72kWxbAu7xuq77DS7ip67qgl77va73fqxGryxDMK7/m67zgixEBAQA7

Here the Content-Type header tells the mail client that this is an image file in the GIF format. The
other header fields in this message part are used by applications to extract the file attachment once it
has been delivered to the recipient. Because e-mail messages must be sent over systems which may
not be able to handle binary data, the image file data has been encoded using a standard algorithm
called base64. This algorithm converts binary data into plain 7-bit text data that can be safely
exchanged with other mail servers. The process of encoding and decoding attachments is
automatically handled by the control when the file is attached. The ExtractFile method is essentially
the reverse of the AttachFile method, automatically decoding and storing a file attachment on the
local system.

Sending Messages

Sending an e-mail message is a simple process using the Internet Mail control, and typically involves
calling a single method, SendMessage. Using the message that was created in the previous section,
let's send the message:

InternetMail1.SendMessage

In most cases, that is all that’s required to send the message. The control will automatically extract
the e-mail addresses from the To, Cc, and Bcc properties and deliver the message to those recipients.
However, there may be circumstances where you wish to send a message to a different set of
addresses. The SendMessage method has several optional arguments that enable you to control the
sender, recipient and even the contents of the message itself.

Mail Exchanges

When a message is delivered to a user, the Internet Mail control must determine what mail server is
responsible for accepting messages for that user. This is accomplished using the Domain Name
Service (DNS), a protocol that is most commonly used to resolve host names such as
www.microsoft.com into Internet addresses. This is typically accomplished by sending a request to a
nameserver, a computer system that provides domain name services. In addition to resolving host
names, nameservers can also provide information about those servers which are responsible for
accepting mail for a given domain. There can be multiple servers which process mail for a domain with
each server assigned a priority as part of their mail exchange (MX) record. If there is no mail
exchange record for a domain, then the domain name itself is used.

The SendMessage method examines each recipient address and queries the nameserver for the
domains which are responsible for accepting mail for users in that domain. If there are multiple mail
servers, they are sorted in order of their listed priority. The control then attempts to establish a
connection with the server and to deliver the message. If a connection cannot be established, the next
mail exchange server is selected from the list. If the message cannot be delivered, then an error is
generated and the next recipient is processed.

The ability to query a nameserver to determine the name of the server responsible for accepting mail
for a given domain is handled internally by the control, and in most cases, is completely transparent.
However, there may be situations in which a specific set of nameservers must be used, most
commonly with corporate intranets. In this case, the NameServer property array can be used to
control what nameservers are used to perform MX record queries. By default, this property contains
the nameservers that were assigned to the local host. Changing these values changes the
nameservers that are used. For example, if a company had two nameservers for their intranet with
the IP addresses of 192.168.31.1 and 192.168.32.1, the control could be instructed to use those
nameservers with the following statements:

InternetMail1.NameServer(0) = "192.168.31.1"
InternetMail1.NameServer(1) = "192.168.32.1"

Note that only Internet (IP) addresses may be assigned to the NameServer property array.
Attempting to specify a domain name will result in an error. To restore the original default
nameservers used by the control, either save their original value before modifying the NameServer
property or call the Reset method.

Relay Servers

In some situations it may not be possible to send mail directly to the server that accepts mail for a
given domain. The two most common situations are corporate networks which have centralized
servers that are responsible for delivering and forwarding messages, or an Internet Service Provider
(ISP) which specifically blocks access to all mail servers other than their own. This is usually done as
either a security measure or as a means to inhibit users from sending unsolicited commercial e-mail
messages. If the standard SMTP port is being blocked, then any connection attempts will either fail
immediately with an error that the server is unreachable, or the connection will simply time-out. In
either case, a relay server must be specified in order to send e-mail messages.

A relay server is a system which will accept messages addressed to users which may be in a different
domain, and will relay those messages to the appropriate server that does accept mail for the domain.
The RelayServer property specifies the host name or address of the mail server that will be used by
the control to deliver a message. If this property is not set, then the SendMessage method will
perform the normal MX record queries and attempt to make a direct connection to each mail server. If
the RelayServer property is set, then the control always establishes a connection to that server and
does not perform any MX record queries. The RelayPort property can be used to specify an alternate
port number on which the relay mail server is accepting connections. If this property is set to a value
of zero, then the default port number will be used.

It is important to note that using a mail server as a relay without the permission of the organization or
individual who owns that server may violate Acceptable Use Policies and/or Terms of Service
agreements with your service provider. Systems which relay messages from anyone, regardless of
whether the message is coming from a recognized domain, are called open relays. Because open
relays are often used to send unsolicited e-mail, many administrators block mail that comes from one.
It is recommended that users check with their network administrators or Internet service providers to
determine if access to external mail servers is restricted and what is the acceptable use policy for
relaying messages through their mail servers.

Retrieving Messages

In addition to composing and sending e-mail messages, the Internet Mail control has the ability to
retrieve a specific user's messages from a mail server. There are a number of properties which are
used to access and manage a user's mailbox:

Properties Description
LastMessage The last message number available in the mailbox.
MailboxSize The size of the current mailbox.
MessageCount The number of messages available in the mailbox.
MessageIndex The current message number.
MessageUID The unique identifier for this message on the server.
Password The password used to authenticate access to the mailbox.
ServerName The host name or address of the mail server.
ServerPort The port number for the mail server.
Timeout The timeout period for retrieving messages.
UserName The username used to authenticate access to the mailbox.

The ServerName, ServerPort, UserName and Password properties are used in establishing a
connection with the mail server and authenticating the specified user. The Timeout property
determines the amount of time the control spends waiting for an operation to complete before
returning an error. The remaining properties are used to manage the mailbox or return information
about the mailbox, such as the number of messages that are available to be retrieved.

There are also several methods available which can be used to access the user's mailbox:

Methods Description
Connect Connect to the specified mail server.
DeleteMessage Delete a message from the current mailbox.
Disconnect Disconnect from the mail server.
GetMessage Get a complete message from the current mailbox.
StoreMessage Get a complete message and store it as a text file.

The Connect method establishes a connection with the mail server and has a number of optional
arguments. In its simplest form, a connection can be established like this:

InternetMail1.ServerName = strMailServer
InternetMail1.UserName = strUserName
InternetMail1.Password = strPassword

nError = InternetMail1.Connect()
If nError <> 0 Then
 MsgBox "Unable to connect to mail server" & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
End If

nMessages = InternetMail1.MessageCount
InternetMail1.Disconnect

MsgBox "There are " & nMessages & " messages " & _
 "in this mailbox", vbInformation

Once a connection has been established, the MessageCount property will return the number of
messages that are currently available and the LastMessage property will return the total number of
messages that were available when the session began. This is an important distinction because as
messages are deleted from the mailbox, the MessageCount value will decrease while the
LastMessage value remains unchanged for the current session.

The MessageIndex property is used to select the current message in the mailbox. Once a message
has been selected, the header for the message is retrieved, but not the entire contents. This allows an
application to use the various header-related properties and methods without incurring the overhead
of downloading the complete message. For example, the following code would add the subject of each
message in the mailbox to a list control:

For nMessage = 1 To InternetMail1.LastMessage
 InternetMail1.MessageIndex = nMessage
 List1.AddItem InternetMail1.Subject
Next

The GetMessage method is used to retrieve a complete message including the headers, body and any
attachments. As the message is being downloaded, the OnProgress event will fire, notifying the
application of how much of the message has been retrieved. Once the complete message has been
downloaded, the GetMessage method will return and the program can continue processing the
message. The following code retrieves all of the messages from a mailbox, and then scans each
message to determine if it contains any file attachments:

For nMessage = 1 To InternetMail1.LastMessage
 ' Retrieve the message
 InternetMail1.GetMessage nMessage

 ' For each part of the message, check the value of the
 ' Attachment property; if it has a value, then this is
 ' the name of a file attachment in the current message part

 For nPart = 0 To InternetMail1.MessageParts - 1
 InternetMail1.MessagePart = nPart
 strFileName = InternetMail1.Attachment
 If Len(strFileName) > 0 Then
 ' This message part is an attachment, it could be
 ' extracted, the name added to a listbox, etc.
 End If
 Next
Next

The StoreMessage method is similar to GetMessage in that it retrieves a message from the server,
but instead of loading the message into the control, it stores the message as a text file. This will not
change the current message, nor will it cause the message to be processed in any way by the control;
the data is stored in the file exactly as it is downloaded from the server. This can be useful if the
application wants to store messages locally for processing later. The following example demonstrates
how StoreMessage can be used:

 For nMessage = 1 To InternetMail1.LastMessage
 strFileName = "c:\temp\msg" & Format(nMessage, "00000") & ".txt"
 nError = InternetMail1.StoreMessage(nMessage, strFileName)
 If nError <> 0 Then
 MsgBox "Unable to store message " & nMessage & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit For
 End If
 Next

Once a message has been retrieved, either for processing or storage, the application may wish to
remove the message from the mailbox by calling the DeleteMessage method. This method marks the
specified message for deletion, and when the session is closed (by calling the Disconnect method),
the message is permanently deleted from the mailbox. Once a message has been marked for deletion,
attempts to access the message will generate an error. To prevent the message from actually being
deleted, the application must call the Reset method instead of Disconnect. This will reset the state of
the mailbox, preventing any messages that were marked for deletion from actually being removed.

Regardless of whether messages are being searched, downloaded, or removed, keep in mind that in
order to access those messages an active connection to the mail server must be established. A
consequence of this is that most servers will disconnect sessions that become inactive for too long. In
this case, an error would be returned indicating that the connection has been closed. It is generally
recommended that applications allow minimal user interaction while retrieving messages. Instead,
process each message in the mailbox and then allow the user to review or modify those messages
locally, once they have all been downloaded.

Consider a simple routine which retrieves each mail message in a user's mailbox, saves it to a file if
the subject contains the word 'failure', and then displays a message box warning the user:

For nMessage = 1 To InternetMail1.LastMessage
 InternetMail1.GetMessage nMessage
 If InStr(1, InternetMail1.Subject, "Failure", vbTextCompare) > 0 Then
 strFileName = "c:\temp\err" & Format(nMessage, "00000") & ".txt"
 InternetMail1.ExportMessage strFileName, mailOptionAllHeaders
 MsgBox "Stored message " & nMessage & " in " & strFileName
 End If
Next

Although this code would appear to execute correctly, the problem is that if the user waits too long to
press the OK button on the message box, the session can time-out and the server will drop the
connection. When the next iteration of the loop calls the GetMessage method, an error will be
returned and the program will fail.

A better implementation would be to download all of the messages, store them, disconnect from the
server, and then begin processing them. The simplest approach would be to use a string array in
which to store each message as follows:

nMessages = InternetMail1.LastMessage
ReDim strMessage(nMessages)

For nMessage = 1 To nMessages
 InternetMail1.GetMessage nMessage
 strMessage(nMessage) = InternetMail1.Message
Next

InternetMail1.Disconnect

Now that all of the messages are stored in the strMessage array, they can be reloaded into the control
by setting the Message property:

For nMessage = 1 To nMessages
 InternetMail1.Message = strMessage(nMessage)
 If InStr(1, InternetMail1.Subject, "Failure", vbTextCompare) > 0 Then
 strFileName = "c:\temp\err" & Format(nMessage, "00000") & ".txt"
 InternetMail1.ExportMessage strFileName, mailOptionAllHeaders
 MsgBox "Stored message " & nMessage & " in " & strFileName
 End If
Next

The one limitation of this approach is that the contents of each message is stored entirely in memory.
For very large messages, a better approach would be to store the message in a temporary file and
then use the ImportMessage method to load the message into the control, deleting the file when it's
no longer needed.

―QuickStart Guide―

This section is provided as a means to quickly getting started with the Internet Mail control. The
examples provided in this section presume some familiarity with the Visual Basic programming
language, however the basic concepts are the same regardless of what language is used. Please refer
to the technical reference for complete information on all of the properties, methods and constants
used by the control. Before performing any of the steps in this guide, you should have installed the
Internet Mail control on your development system.

To include the control in your project in Visual Basic, simply select the Project|Controls menu option
and select the Catalyst Internet Mail Control. In other languages, follow the normal steps that are
taken to include an ActiveX control in your development project.

Sending Text Messages

To compose and send a text e-mail message to one or more recipients, you only need to use two
methods, ComposeMessage and SendMessage. Here is an example of how they could be used to
send a message using the information entered by the user on a form:

Private Sub cmdSend_Click()
 Dim nError As Long

 cmdSend.Enabled = False
 nError = InternetMail1.ComposeMessage(editFrom.Text, _
 editTo.Text, _
 editCc.Text, _
 editBcc.Text, _
 editSubject.Text, _
 editMessage.Text)
 If nError Then
 MsgBox "Unable to compose a new message" & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If

 nError = InternetMail1.SendMessage()

 If nError Then
 MsgBox "Unable to send the message" & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If

 cmdSend.Enabled = True
End Sub

The ComposeMessage method creates a new message and has the following arguments:

Property Description
From A string value which specifies the e-mail address of the person

sending the message. This argument is required.
To A string value which specifies one or more e-mail addresses of

those who will receive the message. Multiple addresses may be
separated by a comma (such as "john@company.com,
jane@company.com"). This argument is required.

Cc An optional string value which specifies recipients who should
receive a copy of the message. Multiple recipients may be separated
by a comma and the addresses are included in the header of the
message.

Bcc An optional string value which specifies recipients who should
receive a copy of the message, however, these addresses are not
included in the header of the message. Multiple recipients may be
separated by a comma.

Subject An optional string value which specifies the subject of the message.
If the argument is not specified then the message is created without
a subject.

MessageText An optional string value which specifies the body of the message. If
the argument is not specified, then the message is created without
a body.

MessageHTML An optional string value which specifies an HTML version of the
message. If this argument is provided along with the MessageText
argument, then a multipart message is created which contains both
plain text and HTML versions of the message. If the MessageText
argument has not been specified, then only an HTML message is
created. If this argument is omitted, then the message is sent with
only a plain text body.

CharacterSet An optional integer value which specifies a character set to use
when composing the message. This typically only needs to be set
for languages which use extended characters. For more information
on the available character sets, consult the technical reference.

EncodingType An optional integer value which specifies an encoding type to be
used with the character set that was selected. For more information
about the encoding types available, consult the technical reference.

The SendMessage method has four optional arguments:

Property Description
Sender An optional string value which specifies the sender of the message. If

this argument is provided, then the message will be identified as being
sent from this address. If the argument is omitted, then the value of
the From property is used. Note that specifying a different sender
address does not change the contents of the message.

Recipient An optional string value which specifies one or more recipient e-mail
addresses. Multiple addresses may be separated by a comma. If this
argument is provided, then the message will be delivered only to those
recipients, regardless of the addresses listed in the message itself. If
the argument is omitted, then the addresses listed in the To, Cc and
Bcc properties are used. Note that specifying a different recipient does
not change the contents of the message.

Message An optional string value which specifies a complete, formatted e-mail
message including all headers and the body. If this argument is
provided, then the message is used instead of the current message;
otherwise the current message will be sent. If this argument has been
specified, but the Sender or Recipient arguments have been omitted,
the message is parsed and the values of the From, To and Cc header
fields are used as appropriate. It is expected that this string contain a
complete, correctly formatted message which conforms to the RFC 822
and MIME e-mail standards.

Options A long integer value which specifies one or more options to be used
when sending the message. If this argument is omitted, the value of
the Options property is used. The most common option that is used is
mailOptionNotify which enables delivery status notification (DSN) if it is
supported by the server. This tells the server to return a message back
to the sender indicating the message has been delivered or if there
were any errors encountered during delivery. Note that if the server
does not support DSN, this option is ignored and will not affect the
delivery of the message itself.

In most cases, the optional arguments to the SendMessage method will not be used. They are
primarily provided for advanced applications which need to control the sender, recipient or message
contents that are being sent to the SMTP server.

Message Delivery Events

Once the SendMessage method is called, three different events will fire in sequence for each
recipient. The first event is OnRecipient which has two arguments. The first is the recipient address,
and the second is a boolean variant which can be used to prevent delivery of the message to that
address. For example, to prevent a message from being sent to anyone with a hotmail.com address,
the following code could be used:

Private Sub InternetMail1_OnRecipient(ByVal Address As Variant, _
 Cancel As Variant)

 If InStr(1, Address, "@hotmail.com", vbTextCompare) Then
 Cancel = True
 End If

End Sub

If delivery to an address is prevented by setting the Cancel argument to True, the message will
continue to be delivered to any remaining recipients. Preventing delivery will not change the contents
of the message so if a recipient address is included in the message headers, it will still be visible to
any other recipients even though the message was not actually delivered to that address. To cancel
delivery of the message and all subsequent recipients, use the Cancel method instead.

Once a connection with the mail server has been established, the OnProgress event will begin firing,
indicating how much of the message has been delivered. It should be noted that this does not specify
the overall progress for multiple recipients but rather the progress in delivering the message for that
specific address. To display an overall progress, an application would have to use the OnProgress
information in conjunction with the total number of recipients to whom the message is being sent. The
Recipients property returns the number of recipients for the current message and the Recipient
property array allows an application to enumerate all of the recipient e-mail addresses.

After the message has been delivered to the mail server, the OnDelivered event is fired which
specifies the recipient address and the size of the message that was sent. It should be noted that
there are still circumstances in which a message can be accepted by a mail server but not actually
delivered to the user. A server may decide to reject or re-route a message based on its own internal
configuration, content filters or message routing rules. To confirm that a message has actually been
delivered, set the Options property to mailOptionNotify to enable delivery status notification. Setting
the ReturnReceipt property to the sender's e-mail address is another option although this depends
on the recipient's software automatically generating the return-receipt message after it has been read.

Sending HTML Messages

To send an HTML formatted e-mail message, the ComposeMessage method can be used, similar to
how plain text messages are sent. For example, consider the following HTML text:

<html>
<head></head>
<body>

<h3>Test HTML Message</h3>
This is a test message which uses HTML to format the text. This
message was created using the Internet Mail control from
Catalyst Development.

</body>

</html>

You could either assign this text to a string, or you could read the message from a file using code like
this:

hFile = FreeFile()
Open strMessageFile For Input As hFile
strMessageHTML = Input(LOF(hFile), hFile)
Close hFile

Where strMessageFile contains the HTML message you wish to send. To compose the HTML formatted
e-mail, simply call the ComposeMessage method as you did with the plain text message, except that
instead of passing the message to the MessageText argument, you pass it to the MessageHTML
argument:

nError = InternetMail1.ComposeMessage(editFrom.Text, _
 editTo.Text, _
 editCc.Text, _
 editBcc.Text, _
 editSubject.Text, _
 "", _
 strMessageHTML)

The message that will be sent will now be displayed to the recipient using HTML and will include the
formatting (such as font and text size) as well as the hyperlink. However, not all mail clients are
capable of displaying HTML e-mail. This poses a problem because the message that they'll receive will
be the largely unreadable HTML source. To resolve this problem, create both a plain text version of the
message along with the HTML version. Ideally it would contain similar content, although you could
provide a simple message which says that this is an HTML e-mail and they should request a plain-text
version if they can't display HTML messages. In either case, simply provide both the MessageText and
MessageHTML arguments:

nError = InternetMail1.ComposeMessage(editFrom.Text, _
 editTo.Text, _
 editCc.Text, _
 editBcc.Text, _
 editSubject.Text, _
 strMessageText, _
 strMessageHTML)

This will create what is called a multipart/alternative MIME message which contains both plain text and
HTML versions of the message. Mail clients which are capable of displaying the HTML message will use
that version, while those that cannot will display the plain text version.

It should be noted that there are still some mail clients which do not understand multipart/alternative
messages and therefore will display both the plain text and the HTML source text. While confusing, the
plain text version will ensure that the message is still readable. For the most part, e-mail is still a plain
text medium so if you consider readability and compatibility with older mail software to be more
important than formatted text, it is recommended that you use only plain text messages. However, if
you know that the recipients have mail clients that are capable of displaying HTML, the Internet Mail
control makes this easy to do.

Attaching Files

In addition to sending text messages, e-mail is commonly used as a means to exchange files. This can
be easily done using the AttachFile method. Let's modify the previous example, presuming that an
edit control has been included on the form which allows a user to input the name of the file they wish
to attach. Add this after the call to the ComposeMessage method:

 ' If a file name has been entered, then attach it to
 ' the message that was composed

If Len(editFileName.Text) > 0 Then
 nError = InternetMail1.AttachFile(editFileName.Text)

 If nError Then
 MsgBox "Unable to attach file " & editFileName.Text & _
 vbCrLf & InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If

If the file does not exist or cannot be accessed, then the AttachFile method will return an error.
Otherwise, the file data will be encoded and attached to the message. The AttachFile method has two
arguments:

Property Description
FileName A string which specifies the name of the file to attach. This argument is

required, and must be a file which the current user has permission to
open and access for reading.

Options An optional long integer which specifies how the file is to be attached to
the current message. If this argument is omitted, the method used is
based on the file type and the contents of the file.

In most cases, it is not necessary to specify the Options argument since the AttachFile method will
automatically determine the correct encoding method based on the contents of the file. However,
there are some situations in which you may wish to use some specific encoding method. For example,
you may want to force the control to use base64 encoding even though the attachment is a plain text
file. To do this, you can use one of the following values:

Constant Description
mailAttachBase64 The base64 algorithm is used to encode the file data. This is the

default encoding type used for binary data such as executables,
image or audio files.

mailAttachUucode The uuencode algorithm is used to encode the file data. This is
an older encoding type that was commonly used before the
MIME standard was developed. It is not recommended that you
use this encoding method unless specifically required by an
application.

mailAttachQuoted The quoted-printable algorithm is used to encode the file data.
This should only be used to encode text files which may contain
non-printable or extended ANSI characters. Using this format on
binary files may cause them to become corrupted when
extracted by the recipient.

For example, if you want to always have the attached file encoded using the base64 algorithm, the
code would be changed to look like this:

 ' If a file name has been entered, then attach it to
 ' the message that was composed

If Len(editFileName.Text) > 0 Then
 nError = InternetMail1.AttachFile(editFileName.Text, _
 mailAttachBase64)
 If nError Then
 MsgBox "Unable to attach file " & editFileName.Text & _
 vbCrLf & InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If

When attaching a file, keep in mind that the size of the attachment in the message will typically be
about 33% larger than the size of the file itself. This is an important consideration because most mail
servers restrict the size of the messages they will accept and will reject messages that exceed that
limit. For example, if a mail server restricts messages to 5 megabytes, the maximum size of a file that
can be attached to the message is about 3.5 megabytes.

Another consideration with file attachments is compatibility with third-party mail client software. If the
current message contains alternative messages (i.e., both plain text and HTML text) then AttachFile
will change the message structure, creating a more complex multipart message which has mixed
content types. Mail software which does not fully conform to the MIME standard may not be able to
correctly display this type of message, either being unable to display the body of the message, or,
displaying the complete message including the alternate text and the encoded file attachment. To
ensure that your message is readable by most recipients, it's recommended that files are attached to
plain text messages.

Importing Messages

In addition to using the ComposeMessage method to create a new message, it is possible to import
existing messages into the control. These messages may exist either as text files already stored on
the local system, records in a database, or may even be created dynamically by the application using
data from other sources. The most important thing to keep in mind is that any message which is
imported into the control must adhere to the basic structure outlined previously in the section
discussing message composition. The control is tolerant of malformed messages, however, importing a
corrupted message will often produce unexpected results. If the source of the message is unknown, it
is recommended that an application perform checks to ensure that it contains reasonable values. For
example, check to make sure the From and To header fields contain e-mail addresses, the message
has a valid Date, and a message body is present.

The simplest method of importing a message into the control is using the ImportMessage method.
Here is a Visual Basic example which uses the Common Dialog control to select a file and then calls
ImportMessage to import the file:

Dim nError As Long

On Error GoTo ImportCanceled
CommonDialog1.CancelError = True
CommonDialog1.DefaultExt = ".txt"
CommonDialog1.DialogTitle = "Import Message"
CommonDialog1.FilterIndex = 1
CommonDialog1.Flags = cdlOFNFileMustExist + cdlOFNLongNames
CommonDialog1.Filter = "Text Files (*.txt)|*.txt|" & _
 "E-Mail Message Files (*.eml)|*.eml|" & _
 "All Files (*.*)|*.*"

CommonDialog1.ShowOpen
On Error GoTo 0

nError = InternetMail1.ImportMessage(CommonDialog1.FileName)
If nError Then
 MsgBox "Unable to import message from " & _
 CommonDialog1.FileTitle & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
End If

MsgBox "Imported message from " & InternetMail1.From & vbCrLf & _
 "regarding " & Chr(34) & InternetMail1.Subject & Chr(34), _
 vbInformation

Exit Sub

ImportCanceled:
Exit Sub

Once the message has been imported successfully, the various message related properties can be
accessed just as if the message had been composed. Note that the current message, if any, will be
completely replaced by the message that has been imported.

Another method of importing a message is from a string. This is useful if a message has been stored
in something other than a text file such as a record in a database. To do this, simply set the control's
Message property to the string which contains the message:

On Error Resume Next: Err.Clear
InternetControl1.Message = strMessage
If Err.Number Then
 MsgBox Err.Description, vbExclamation
 Exit Sub
End If

Unlike the ImportMessage method, which returns an error code if it fails, setting the Message
property will result in an error being raised if there is a problem. Because of this, any application
which sets the Message property should use an error handler. In this example, it simply executes the
next statement and uses the Err object to obtain the error code and description.

A third method of importing a message into the control is to use the ParseMessage method. Unlike
the ImportMessage method or the Message property, it is not required that the complete message
be available at once. Instead, ParseMessage enables an application to import a message in pieces,
dynamically parsing the data and adding to the contents of the current message. The following
example opens a file which contains a message, reads it in 1,024 byte blocks and then passes it to the
ParseMessage method:

hFile = FreeFile()
Open strFileName For Input As hFile
nFileLength = LOF(hFile)

InternetMail1.ClearMessage

Do While nFileLength > 0
 cbBuffer = nFileLength
 If cbBuffer > 1024 Then cbBuffer = 1024
 nFileLength = nFileLength - cbBuffer
 strBuffer = Input(cbBuffer, hFile)
 nError = InternetMail1.ParseMessage(strBuffer)
 If nError <> 0 Then
 MsgBox InternetMail1.LastErrorString, vbExclamation
 Exit Do
 End If
Loop

Close hFile

The initial call to the ClearMessage method ensures that if there is a current message, the contents
are cleared first. Then the ParseMessage method is repeatedly called until the end-of-file is reached.
This approach could be used when a message is being created by some external data source or the
application needs to make some sort of change to the message contents dynamically. Note that the
purpose of the above example is to demonstrate how to use the ParseMessage method and is not
the recommended procedure for importing a message from a text file. Refer to the technical reference
documentation for the ImportMessage method for more information on importing messages from
text files.

Exporting Messages

The Internet Mail control has the ability to export the current message contents as a string or as a
text file on the local system. When a message is exported, the complete message including headers,
message body and any file attachments are included. The following example uses the CommonDialog
control to choose a file name to export the current message to:

Dim nError As Long

On Error GoTo ExportCanceled
CommonDialog1.CancelError = True
CommonDialog1.DefaultExt = ".txt"
CommonDialog1.DialogTitle = "Export Message"
CommonDialog1.FilterIndex = 1
CommonDialog1.Flags = cdlOFNLongNames + cdlOFNOverwritePrompt
CommonDialog1.Filter = "Text Files (*.txt)|*.txt|" & _
 "E-Mail Message Files (*.eml)|*.eml|" & _
 "All Files (*.*)|*.*"

CommonDialog1.ShowSave
On Error GoTo 0

nError = InternetMail1.ExportMessage(CommonDialog1.FileName)
If nError Then
 MsgBox "Unable to export message to " & _
 CommonDialog1.FileTitle & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
End If

MsgBox "Exported message to " & CommonDialog1.FileName & vbCrLf & _
 "regarding " & Chr(34) & InternetMail1.Subject & Chr(34), _
 vbInformation

ExportCanceled:
Exit Sub

When a message is exported, headers may be re-ordered and certain headers which contain routing
information (such as Received and Return-Path) are omitted by default.

These headers are not normally needed when composing or delivering a message, however, there
may be situations in which an application needs to preserve these headers or the order in which they
were originally received. The ExportMessage method has an optional argument which can be used to
specify one or more export options:

Constant Description
mailOptionAllHeaders Preserve all headers in the message when it is exported,

including those headers which provide routing information
such as Received and Return-Path.

mailOptionKeepOrder Preserve the original order of the message headers. This is
only useful if the message was retrieved from a mail server
or imported from a file.

These two values may be combined if both options are required. For example, the following code
would export a message with all of the headers, preserving their original order:

 nOptions = mailOptionAllHeaders Or mailOptionKeepOrder
 nError = InternetMail1.ExportMessage(strFileName, nOptions)

Note that the option values are actually bit flags, so a bitwise OR operation is used to combine them.
This method is preferred over using simple addition which can produce unexpected results in some
cases. Note that if the ExportMessage method is called without specifying the optional argument,
then the value of the Options property is used as a default, such as:

 InternetMail1.Options = mailOptionAllHeaders Or mailOptionKeepOrder
 nError = InternetMail1.ExportMessage(strFileName)

This would also cause the message to be exported with all headers and preserve their original order. A
general rule of thumb is that if there is an optional argument to a method which corresponds to a
property in the control, if that argument is not specified, the property value will be used as a default.

If an application needs to do some processing on the message but doesn't want the overhead of
exporting the message to a file, then the message contents can be read using the control's Message
property. This property returns a string which contains the complete message, including all headers.
The Options property determines whether or not all headers are exported and if the original header
order is preserved, just as with the ExportMessage method. It should be noted that this is different
than the MessageText property, which returns only the body of the current message part, not the
complete message.

Extracting Attachments

To determine if a message contains one or more file attachments, the simplest method is to check the
value of the Attachment property for each message part. This property returns the name of the file
attachment in the current message part or returns an empty string if there is no file attachment. The
control checks for standard MIME attachments as well as non-standard uuencoded files which are
embedded in the body of the message. The following code demonstrates how this could be done:

bHasAttachments = False

For nPart = 0 To InternetMail1.MessageParts – 1
 InternetMail1.MessagePart = nPart
 If Len(InternetMail1.Attachment) > 0 Then
 bHasAttachments = True
 Exit For
 End If
Next

To extract the attached file, use the ExtractFile method and specify the name of the attachment on
the local system. For example:

For nPart = 0 To InternetMail1.MessageParts – 1
 InternetMail1.MessagePart = nPart
 If Len(InternetMail1.Attachment) > 0 Then
 strFileName = "c:\temp\" & InternetMail1.Attachment
 nError = InternetMail1.ExtractFile(strFileName)
 If nError Then
 MsgBox "Unable to extract " & InternetMail1.Attachment, _
 vbExclamation
 End If
 End If
Next

If the file is extracted from the message successfully, the ExtractFile method will return a value of
zero, otherwise an error code will be returned.

Message Headers

Each message contains additional information about the message. The information is organized in
header blocks at the beginning of the message and at the beginning of each section of a multipart
message. Each header block contains one or more header fields, along with their values. For example,
the sender of a message is specified in the "From" header field, with the value being the sender's e-
mail address.

As discussed in the section on composing messages, there are a number of properties in the control
which represent header fields in the current message. The From, To and Subject properties each
correspond to their respective header field in the message. However, messages can have many more
headers than those which are represented by properties in the control. To access these headers, there
is the GetHeader method which can be used to obtain the value of a particular field. For example,
one way to determine if a message was generated by Microsoft Outlook is to check for the presence of
the X-MimeOLE header:

If InternetMail1.GetHeader("X-MimeOLE", strHeaderValue) Then
 MsgBox strHeaderValue, vbInformation
End If

It should be noted that unlike most of the other methods, the GetHeader method returns a boolean
value, not an error code. The method returns True if the header field is present in the message and
the second argument, a string variant, will contain the header value. If the header field does not exist,
the method will return False.

There are a number of standard headers which are recognized by all mail clients and are typically
those which are represented as properties in the control. However, implementers are free to create
their own custom headers as long as they prefix them with "X-" (which indicates that they are a non-
standard extension). While a mail client can check for the presence of extended headers, it should not
depend on them being in the message. General purpose applications must be able to handle situations
where a non-standard header is either missing or contains an unexpected value.

To change the value of a header, an application can use the SetHeader method. If the header field
exists, its value will be replaced by the new value specified as an argument to the method. If the
header field does not exist, it will be added to the current message. For example, to create a custom
header field which contains a customer number, the following code could be used:

InternetMail1.SetHeader "X-Customer-Number", nCustomerNumber

Because the second argument to the SetHeader method is a variant, a variety of data types such as
strings, integers, etc., may be passed as values. Note that data types which are affected by
localization, such as date values, will be represented differently based on how the local system has
been configured.

Remember that the GetHeader and SetHeader methods use the current message part, so if your
message is multipart (such as having a file attachment) then make sure that you first set the
MessagePart property to a value of 0 to ensure you are in the main header block for the message.

In some circumstances you may need to list all of the header values in a message without knowing
what header fields are present. You can do this by enumerating the header fields using the
GetFirstHeader and GetNextHeader methods. The following example stores each header field and
value in a pair of listboxes:

If InternetMail1.GetFirstHeader(strHeaderField, strHeaderValue) Then
 Do
 List1.AddItem strHeaderField
 List2.AddItem strHeaderValue
 Loop While InternetMail1.GetNextHeader(strHeaderField, strHeaderValue)
End If

To delete a message header, call the DeleteHeader method with the header field as the argument. If
the header field exists, it will be deleted and the method will return a value of True. If the header does
not exist, the method will return False. To delete all of the headers in a message, you could use code
like this:

Do While InternetMail1.GetFirstHeader(strHeaderField, strHeaderValue)
 InternetMail1.DeleteHeader strHeaderField
Loop

Remember that a valid mail message requires a header block, so once the headers have been deleted,
new values should be set for fields such as From, To, Date, Subject and so on. Also, keep in mind that
changing or deleting header fields in a message should only be done when the effect of that change is
well understood. In other words, simply deleting all of the headers to "clean up" a message is not
recommended since it may damage the internal structure of the message, making it unreadable to
other mail software.

Retrieving Messages

Mail messages are stored on a mail server in a mailbox, typically a folder or single file which contains
all of the messages for a specific user. As new messages arrive for the user they are added to the
mailbox and they are removed as they are read and deleted. The first step in retrieving messages
from a user's mailbox is establishing a network connection with the mail server and authenticating
that connection with a user name and password. This can be done using the Connect method, which
has a number of optional arguments:

Constant Description
ServerName An optional string value which specifies the domain name or IP address

of the mail server. If this argument is not specified, the value of the
ServerName property is used instead.

ServerPort An optional integer value which specifies the port number to use when
establishing a connection with the server. If this argument is not
specified, the value of the ServerPort property is used instead. A
value of zero means that the default port for the server should be used.

UserName An optional string value which specifies the user name is required to
authenticate access to the mailbox. If this argument is not specified,
the value of the UserName property is used instead.

Password An optional string value which specifies the password which is required
to authenticate access to the mailbox. If this argument is not specified,
the value of the Password property is used instead.

Timeout An optional integer value which specifies the amount of time in seconds
that the control will wait for an operation to complete before returning
an error. If this argument is not specified, the value of the Timeout
property is used. The default timeout period is sixty (60) seconds.

Options An optional integer value which specifies one or more options as bit
flags. If this argument is not specified, the value of the Options
property is used instead. The most common option that is used is
mailOptionAPOP which indicates that APOP authentication should be
used instead of standard user authentication when connecting to the
mail server. Refer to the technical reference for information about the
other options that are available.

The following code demonstrates connecting to a mail server:

Dim nError As Long
Dim nMessages As Long

nError = InternetMail1.Connect(editServerName.Text, , _
 editUserName.Text, _
 editPassword.Text)

If nError Then
 MsgBox "Unable to connect to " & editServerName.Text & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
End If

As with most of the other control methods, Connect returns an error status if the connection has
failed or a value of zero if it was successful. Once a connection with the mail server has been
established, you can list the available messages by setting the MessageIndex property. For example,
the following code would check to make sure that there are messages in the mailbox, and if so, add
the subject of each message to a listbox:

If InternetMail1.LastMessage = 0 Then
 MsgBox "The mailbox is currently empty", vbInformation
 InternetMail1.Disconnect
 Exit Sub
End If

For nMessage = 1 To InternetMail1.LastMessage
 InternetMail1.MessageIndex = nMessage
 List1.AddItem InternetMail1.Subject
Next

When the MessageIndex property is set, the headers for the specified message are retrieved from
the mail server and can be accessed using the control's properties. However, the entire message
contents are not retrieved unless the GetMessage method is called. This allows applications to
retrieve message headers without the requirement that the complete message be downloaded. For
example, the following code would check to see if a message has attachments by checking the
Content-Type header:

For nMessage = 1 To InternetMail1.LastMessage
 InternetMail1.MessageIndex = nMessage
 If InStr(InternetMail1.ContentType, "multipart/mixed") Then
 ' This is a multipart/mixed message, so it is likely
 ' that it contains one or more file attachments
 List1.AddItem InternetMail1.Subject
 End If
Next

The GetMessage method will retrieve the complete message including the headers, message body
and any attachments. Immediately after the GetMessage method is called, the OnProgress event
will begin to fire, enabling an application to update the user interface.

As with most of the other methods, once the message has been retrieved, GetMessage will return a
value of zero if it was successful or an error code if a problem was encountered. The following
example demonstrates how GetMessage and ExportMessage can be used to save messages to the
local system:

For nMessage = 1 To InternetMail1.LastMessage
 strFileName = "c:\temp\msg" & Format(nMessage, "00000") & ".txt"

 ' Retrieve the message from the server
 nError = InternetMail1.GetMessage(nMessage)
 If nError Then Exit For

 ' Export the message to a file on the local system
 nError = InternetMail1.ExportMessage(strFileName)
 If nError Then Exit For
Next

If nError Then
 MsgBox "Unable to retrieve or store message " & nMessage & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
End If

An alternate method of storing messages in files on the local system is to use StoreMessage instead
of GetMessage and ExportMessage. The most significant difference between the two approaches is
that the StoreMessage method does not change the contents of the current message. Instead, it
simply retrieves the message from the server and stores it in the specified file. The previous example
could be re-written as:

For nMessage = 1 To InternetMail1.LastMessage
 strFileName = "c:\temp\msg" & Format(nMessage, "00000") & ".txt"
 ' Store the message from the server
 nError = InternetMail1.StoreMessage(nMessage, strFileName)
 If nError Then Exit For
Next

If nError Then
 MsgBox "Unable to store message " & nMessage & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
End If

It is important to keep in mind that while the application is connected to the mail server, the mailbox
is in a locked state which prevents any other clients from accessing it. For this reason, it is
recommended that any significant message processing be done on local copies of the messages.

Deleting Messages

Because mailboxes are frequently limited in size by the mail system administrator, it is common
practice to delete those messages which have been stored on the local system or have been marked
for deletion by the client. To delete a message from the mailbox, use the DeleteMessage method.
This will mark the message for deletion, removing it from the mailbox when the client session is
terminated. Once a message has been marked for deletion it is no longer available to the client and
attempting to access the message (for example, by setting the MessageIndex property) will result in
an error.

As messages are marked for deletion from the mailbox, the MessageCount property will be
decremented to reflect the current number of messages. Because of this, the MessageCount
property should generally not be used in constructs like For..Next or Do..While loops where each
message is being processed. Instead, use the LastMessage property which remains constant for the
duration of the client session. To delete all of the messages in the mailbox, use code like this:

For nMessage = 1 To InternetMail1.LastMessage
 nError = InternetMail1.DeleteMessage(nMessage)
 If nError Then
 MsgBox "Unable to delete message " & nMessage & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If
Next

To prevent those messages from actually being removed from the mailbox, call the Reset method
which resets both the state of the control and the current mailbox (if a connection to a mail server has
been established). Keep in mind that once the Disconnect method is called, any messages that have
been marked for deletion are permanently removed from the mailbox and cannot be recovered.

―Programming with Visual C++―
The Internet Mail control can be used in Visual C++ in several ways, depending on the type of
program being developed and the way in which the control will be utilized. Although much of the
complexity of COM can be hidden through the use of wrapper classes and smart pointers,
development using COM objects is still more complex than simply using the MFC classes with which
most Windows developers are familiar.

One of the first things that a C++ developer will encounter when programming with the control is that
all of the methods use a data type called a variant. Most developers aren't familiar with what a variant
is or how it should be used unless they have experience with COM programming, so this is a frequent
point of confusion. The simplest definition is that a variant is a structure which contains type
information and a union of intrinsic data types such as characters, integers and so on. The variant
essentially serves as a generic data type, and the function being called has the responsibility of using
or converting that data as necessary. In addition to the VARIANT structure itself, there are several
classes which encapsulate variants, such as _variant_t, COleVariant and CComVariant. These
classes make it easier for C++ programmers to use variants, and for the most part allows them to be
used just as if the variant was an intrinsic type.

Another data type that may be unfamiliar is the BSTR, which is used for string data. Similar to C
strings, the BSTR is a pointer to a null terminated array of characters which make up a string.
However, there are some significant differences between the two. First, a BSTR always uses the
Unicode character set, even if the program itself does not use Unicode. That means that each
character in the BSTR is actually 16 bits, so special care must be taken to not assume that a character
in the string is equivalent to a single byte. Second, although BSTR strings are null terminated, they
may actually contain embedded nulls. This is because the BSTR also has information about the length
of the string, so standard string functions (even the Unicode versions of them) should not be used if
there is a chance that the string contains embedded nulls. Part of the Automation API is a collection of
functions which manage BSTR strings, such as SysAllocString and SysStringLen.

However, most programmers prefer to use one of the classes which encapsulate BSTRs, such as
_bstr_t and CComBSTR.

In addition to the COM data types, another aspect of using COM objects is that most COM related
functions return HRESULT values. The HRESULT is a 32-bit unsigned integer which contains status
information about an error or warning returned by a function. Two macros which are commonly used
are FAILED and SUCCEEDED which are used to determine whether or not the HRESULT value indicates
that the function failed or was successful. All COM object methods and property accessor functions
return HRESULT values which must be checked by the caller to ensure that the function was called
correctly.

Microsoft Foundation Classes

The Internet Mail control can be used with MFC based applications by including the control in the
project that is being developed. This is done through the Visual C++ IDE by selecting the menu option
Project | Add to Project | Components and Controls. This will display a dialog which is used to
select the component to add. First select the Registered ActiveX Controls folder, scroll over to the
Catalyst Internet Mail Control, and press the Insert button. A dialog is then displayed which
determines the class name and files which will be generated to "wrap" the ActiveX control. In this
case, the default class name will be CInternetMail. A new source file will be added to the project
named InternetMail.cpp which contains the methods for the wrapper class that was created. A
header file named InternetMail.h will also be created and included in the header file for the dialog
class.

To create an instance of the control, the simplest approach is to create a dialog-based application, in
which case the control can be selected from the dialog component palette, similar to how controls are
placed on forms in Visual Basic. The control is included as a resource and assigned a resource ID.

Then, using the MFC Class Wizard, a member variable for the dialog class is assigned to that instance
of the control. This means that a declaration similar to this will be added to the dialog class:

CInternetMail m_ctlInternetMail;

And in the DoDataExchange method, a line will be added which initializes the control when the
dialog is created:

DDX_Control(pDX, IDC_INTERNETMAIL1, m_ctlInternetMail);

Now, any of the control's properties or methods may be accessed through the member variable for the
CInternetMail class. For example:

COleVariant varServerName(m_strServerName);
COleVariant varServerPort(m_nServerPort);
COleVariant varUserName(m_strUserName);
COleVariant varPassword(m_strPassword);
COleVariant varTimeout(m_nTimeout);
COleVariant varOptions;
COleVariant varError;

varError = m_ctlInternetMail.Connect(varServerName,
 varServerPort,
 varUserName,
 varPassword,
 varTimeout,
 varOptions);

varError.ChangeType(VT_I4);

if (V_I4(&varError) != 0)
{

 CString strError;
 strError.Format(_T("Unable to connect to %s\n%s"),
 m_strServerName,
 m_ctlInternetMail.GetLastErrorString());

 AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
}
else
{
 CString strMessage;
 LONG nMessages;

 nMessages = m_ctlInternetMail.GetMessageCount();
 m_ctlInternetMail.Disconnect();

 strMessage.Format(_T("This mailbox has %ld messages"), nMessages);
 AfxMessageBox(strMessage, MB_ICONINFORMATION, 0);
}

In this example, the arguments are converted to variants by initializing COleVariant variables which
are then passed to the Connect method. There are two important things to note here. First, even
though the documentation lists some of the arguments as optional, when using the control this way in
C++, you must specify all of them. This is because optional parameters really aren't omitted from the
method; they are still passed as variants, but instead of having a value, they are initialized to tell the
control that they were not specified. This is accomplished here by passing an empty (uninitialized)
COleVariant, as with the varOptions variable. The second important point is that although the
method is documented as returning a long integer, the actual return type is a variant that contains a
long integer value.

You'll notice that in this code, there are also some macros being used with the variant types. The first
one is used when checking the return value from the method:

varError.ChangeType(VT_I4);

if (V_I4(&varError) != 0)
{
 .
 .
 .
}

The ChangeType method for the COleVariant class changes the type of variant, in this case to a
long integer, specified by the value VT_I4. What this does is coerce the variant data into a long
integer if it already isn't one. If the variant already represents a long integer, then the call to
ChangeType doesn't have any effect. Next, the V_I4 macro is used to obtain the actual value from
the long integer. Note that it expects a pointer to a variant, not the variant itself.

Instantiating CWnd Based Controls

To create an instance of the control in an MFC application without using a dialog, add the control to
the project using the same method described previously. However, instead of placing the control on a
dialog using the resource editor, declare a CInternetMail member variable in the class that will be
using the control. Then, call the Create function to create an instance of the control for that class. For
example:

CRect rcNull;
BSTR bstrLicKey;
BOOL bCreated;
USES_CONVERSION;

bstrLicKey = SysAllocString(T2OLE(CSIMXCTL_LICENSE_KEY));

bCreated = m_ctlInternetMail.Create(NULL, // window name
 0, // window style
 rcNull, // window rect
 this, // parent window
 IDC_CONTROL, // control ID
 NULL, // persistent storage
 FALSE, // IStorage
 bstrLicKey); // license key

if (bCreated == FALSE)
{
 AfxMessageBox(_T("Control creation failed"), MB_ICONEXCLAMATION);
 EndDialog(0);
}

Because the control is not part of the program's resources as in the previous example, an instance of
the control must be explicitly created by calling the Create method. Because the Internet Mail control
is not visible at runtime, most of the window arguments are null, however it is still required that a
parent window be specified; in this case, the this pointer is used. If the class that is using the control
is not derived from CWnd, a hidden window can be created and specified as the parent instead.

Another issue is that to create an instance of the control, the application must pass it a runtime
license key. This is a BSTR string which is used by the control to determine if it can be used in an
application. If this string is NULL, then the control will only load if the current system has a valid
development license. If it is not NULL, then the license key is validated and an instance of the control
is created. The license key for the Internet Mail control defined in the csimxkey.h header file is found
in the Include folder where the product was installed. Note that the key value will be NULL for
evaluation versions of the control, which means that the application cannot be redistributed until a
license has been purchased and registered.

The SysAllocString function is used to create the license key BSTR and this requires that the license
key be converted to Unicode. In afxpriv.h there are several string conversion macros that are useful
for converting between ANSI and Unicode. One is OLE2T which converts a Unicode string to an
LPTSTR, and the other is T2OLE which converts an LPTSTR to a Unicode string. The afxpriv.h header
file is not usually included in MFC applications, so it will need to be added to StdAfx.h manually.

The USES_CONVERSION macro is required and must be included in the function prior to using on the
conversion macros. In this case, T2OLE is used to convert the ANSI license key string to Unicode, and
then that is passed to SysAllocString to create a BSTR. It should be noted that OLE2T and T2OLE
allocate memory from the stack to do the conversion, so they should not be used with very large
amounts of data.

Importing ActiveX Controls

In Visual C++ 5.0, the #import compiler directive was included as an alternative to adding the
control to a project through the IDE. Similar to how header files are included in an application, this
directive incorporates information from a type library, automatically creating wrapper classes for its
interfaces. These classes use smart pointers which handle things like reference counting automatically,
and makes actually using the control's interface much simpler.

To use this method of referencing a control, the first thing that needs to be done is to import the
control into the module where it will be used. This is done using the #import directive which can be
placed in an appropriate header file:

#import "csimxctl.ocx" no_namespace named_guids

The no_namespace attribute specifies that the interface classes should not be defined in a
namespace. Normally, a namespace is created which is based on the name of the library. The
named_guids attribute tells the compiler to initialize the GUID variables using the standard naming
convention.

The next step is to declare a variable that is used to reference an instance of the control. For example,
the following could be included in the definition of a class:

IInternetMailPtr m_pIInternetMail;

Note that the member variable is declared as type IInternetMailPtr, which is a specialization of the
smart pointer _com_ptr_t template class. If errors are encountered when compiling the application
indicating that the compiler cannot instantiate an abstract class (because the class contains pure
virtual functions) then most likely the member variable was declared as type IInternetMail, which is
incorrect. Don't forget the "Ptr" on the end of the name.

To use the control, an instance of the control must be created using the CreateInstance function.
However, before that can be done, the COM subsystem must be initialized by the application. For MFC
based applications, this is accomplished by calling the function AfxOleInit which is essentially a
wrapper around CoInitializeEx. This should be done fairly early in the application, typically in the
InitInstance function of the CWinApp derived application class. Next, the control's CreateInstance
member function must be called before it is used:

HRESULT hr;

hr = m_pIInternetMail.CreateInstance(CLSID_InternetMail);
if (FAILED(hr))
{
 AfxMessageBox(_T("Control creation failed"), MB_ICONEXCLAMATION);
 return;
}

The HRESULT return value should be 0, which indicates that an instance of the control was created
successfully. If an error is returned, this typically means that AfxOleInit (or CoInitializeEx) was not
called first, or the control has not been registered on the system.

Unlike the previous examples where the initialization of the control was performed automatically or by
calling the Create function, this instance of the control should be explicitly initialized by calling the
Initialize method:

_variant_t varModule;
_variant_t varLicKey;
_variant_t varError;
USES_CONVERSION;

// Create the runtime license key defined in csimxkey.h
varLicKey = SysAllocString(T2OLE(CSIMXCTL_LICENSE_KEY));

// Initialize the control
varError = m_pIInternetMail->Initialize(varModule, varLicKey);
if (V_I4(&varError) != 0)
{

AfxMessageBox(_T("Control initialization failed"), MB_ICONEXCLAMATION);
return;

}

Just as in the previous example using the Create method, the runtime license key is created by
converting it to Unicode and then calling SysAllocString to create a BSTR string. Because the control
methods use variants, this key is assigned to a variant. Note that the _variant_t type is used, which
is a COM support class which encapsulates a variant. The Initialize method returns a long integer
variant which specifies an error code. A value of zero indicates that the control was successfully
initialized, while a non-zero value is an error code.

Once the control has been created and initialized, it can be used in a fashion similar to how the
previous examples were written:

_variant_t varServerName(m_strServerName);
_variant_t varServerPort(m_nServerPort);
_variant_t varUserName(m_strUserName);
_variant_t varPassword(m_strPassword);
_variant_t varTimeout(m_nTimeout);
_variant_t varOptions;
_variant_t varError;

varError = m_pIInternetMail->Connect(varServerName,
 varServerPort,
 varUserName,
 varPassword,
 varTimeout,
 varOptions);

if (V_I4(&varError) != 0)
{
 CString strError;
 USES_CONVERSION;

 strError.Format(_T("Unable to connect to %s\n%s"),
 m_strServerName,
 OLE2T(m_pIInternetMail->GetLastErrorString()));

 AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
}
else
{
 CString strMessage;
 LONG nMessages;

 nMessages = m_pIInternetMail->MessageCount;
 m_pIInternetMail->Disconnect();

 strMessage.Format(_T("This mailbox has %ld messages"), nMessages);
 AfxMessageBox(strMessage, MB_ICONINFORMATION, 0);
}

There are two significant differences between the previous examples which uses the control as a CWnd
derived class and this class which is based on COM smart pointers. The first is that methods are
accessed through the m_pIInternetMail object as a pointer to the interface, so the -> operator is
used. The second is that the control's properties, such as MessageCount, can be accessed as if they
are member variables of the class rather than using accessor functions like GetMessageCount. This
is a bit of slight-of-hand being performed by the interface class using the __declspec(property)
extension. For example, the MessageCount member is declared as:

__declspec(property(get=GetMessageCount)) long MessageCount;

This tells the compiler whenever the MessageCount member is read, it should call the
GetMessageCount function to return the value. So, in effect the above code is changed by the
compiler into:

 nMessages = m_pIInternetMail->GetMessageCount();

Either method may be used, so it is generally up to the personal preferences of the developer as to
which is used.

Component Object Model API

The fourth approach that can be used to create an instance of an ActiveX control in your C++ program
is to use the COM API directly. Generally speaking this option should only be used if absolutely
necessary; it is a more complex process and involves more coding than either using CWnd derived
controls or the #import directive.

The first step is to create the header file for the interface defined in the control's type library. This will
require two tools that are included with Visual C++ and the Microsoft Platform SDK, the COM Object
Viewer, and the Microsoft Interface Definition Language (MIDL) compiler. These tools can also be
downloaded from Microsoft from their MSDN resources section of the website.

To create the interface definition (IDL) file, start the COM Object Viewer, select the Control folder and
then the Catalyst Internet Mail control from the list of available controls. Right click on the control and
select View Type Information. This will open the ITypeLib Viewer window which contains the interface
definition. Select File | Save As and save it as csimxctl.idl in the project directory. Close the viewer
window and exit the COM Object Viewer.

Once the IDL file has been created, open the IDL file in the editor and look for a series of enum
typedefs which define the constants for the control:

typedef [public]
_mailOptionConstants mailOptionConstants;

typedef enum {
mailOptionNoStartTLS = 1,
mailOptionAPOP = 2,
…
} _mailOptionConstants;

These declarations are a side-effect of how the COM Object Viewer generates the IDL file and it needs
to be cleaned up a bit so that the MIDL compiler generates the correct header file. Remove the
typedef [public] section before each typedef enum section in the file. In other words, you would want
to remove each section that looks like:

typedef [public]
_mailOptionConstants mailOptionConstants;

The actual enum typedefs can stay in the IDL so that they're included in the header file and can be
used by the application. Note that if these extraneous typedefs aren't removed, the MIDL compiler will
generate duplicate enums in the header file and will cause compiler errors.

Save the IDL file and then use the MIDL compiler to generate the header file which will be included
with your project. From the command line, enter:

midl /Oicf /W1 /Zp8 /h csimxctl.h /iid csimxctl_i.c csimxctl.idl

This will create three files: csimxctl.h, csimxctl_i.c and csimxctl.tlb. The TLB is the compiled type
library and isn't needed for this example. The csimxctl.h header file contains the interface definition
for the control, and the csimxctl_i.c file is a C source file which defines the GUIDs used by the
control. Both of these files should be included in your project, typically in the source module where the
control will be used. Note that the MIDL compiler may emit a warning that there are too many
methods in the interface. This is a warning that applies only to early versions of Windows NT 4.0 and
doesn't affect current versions of Windows NT 4.0 or other Windows platforms such as Windows 98 or
Windows 2000.

Now that the header file for the control interface has been created, the next step is to create an
instance of the control. Define a member variable that is a pointer to the interface which looks like
this:

IInternetMail *m_pIInternetMail;

Safe programming practices would also ensure that the pointer is initialized to NULL in the constructor
to avoid potential errors when referencing the variable. As with the previous examples, the COM
subsystem must be initialized. For MFC based applications, this can be done by calling AfxOleInit in
the InitInstance function for the CWinApp derived application class. For other applications,
CoInitializeEx should be called as:

HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);
if (FAILED(hr))
{

// Unable to initialize COM subsystem
return;

}

Then the following code can be used to create an instance of the control:

HRESULT hr;
BSTR bstrLicKey;
IClassFactory2 *pFactory = NULL;
IUnknown *pUnknown = NULL;
USES_CONVERSION;

m_pIInternetMail = NULL;

hr = CoGetClassObject(CLSID_InternetMail,
 CLSCTX_INPROC_SERVER,
 NULL,
 IID_IClassFactory2,
 (LPVOID *)&pFactory);

if (FAILED(hr))
{
 // Unable to get the class factory interface for the
 // control, probably because it isn't registered
 return;
}

// Create the runtime license key defined in csimxkey.h
bstrLicKey = SysAllocString(T2OLE(CSIMXCTL_LICENSE_KEY));

// Create an instance of the control
hr = pFactory->CreateInstanceLic(NULL, NULL, IID_IUnknown,
 bstrLicKey,
 (LPVOID *)&pUnknown);
pFactory->Release();

if (FAILED(hr))
{
 // Unable to create an instance of the control using
 // the specified license key
 return;
}

hr = pUnknown->QueryInterface(IID_IInternetMail,
 (LPVOID *)&m_pIInternetMail);

if (FAILED(hr))
{
 // Unable to get the interface to the control

 return;
}

The CoGetClassObject function is used to get an interface pointer to the control's class factory,
which actually does the work of creating an instance of the class. The CreateInstanceLic member
function passes the runtime license key to the control, and an instance is created if the key is valid.
Note that if a NULL value is passed as the license key, then the control will only be created if the
system has a development license installed. The interface to the class factory is released and then
QueryInterface is called on the returned pointer to obtain the interface to the control's properties
and methods.

The code to use the interface is similar to the previous examples, however there are several significant
differences:

COleVariant varServerName(m_strServerName);
COleVariant varServerPort(m_nServerPort);
COleVariant varUserName(m_strUserName);
COleVariant varPassword(m_strPassword);
COleVariant varTimeout(m_nTimeout);
COleVariant varOptions;
COleVariant varError;
HRESULT hr;

hr = m_pIInternetMail->Connect(varServerName,
 varServerPort,
 varUserName,
 varPassword,
 varTimeout,
 varOptions,
 &varError);

if (V_I4(&varError) != 0)
{
 CString strError;
 BSTR bstrError;
 USES_CONVERSION;

 hr = m_pIInternetMail->get_LastErrorString(&bstrError);
 if (FAILED(hr))
 return;

 strError.Format(_T("Unable to connect to %s\n%s"),
 m_strServerName,
 OLE2T(bstrError));

 AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
}
else
{
 CString strMessage;
 LONG nMessages = 0;

 hr = m_pIInternetMail->get_MessageCount(&nMessages);
 if (FAILED(hr))
 return;

 m_pIInternetMail->Disconnect(&varError);

 strMessage.Format(_T("This mailbox has %ld messages"), nMessages);
 AfxMessageBox(strMessage, MB_ICONINFORMATION, 0);
}

As with the version of the code using the COM smart pointer, p_IInternetMail is a pointer to the
interface, which requires that the -> operator be used to access its member functions. Property values
are read using accessor functions that are prefixed with "get_", while those which set properties are
prefixed with "put_". For example, to get the value of the MessageCount property, the function
name would be get_MessageCount. Methods in the control are called using the same name.

Another difference is that all of the functions return HRESULT values, with the actual property value or
return value from the method specified as a function parameter that is passed by reference. This is
why the varError variable is passed as the last argument to the Connect method. If the HRESULT
return value is non-zero, this typically will indicate an error. The error may be specific to the control,
or it may be a general error coming from the COM subsystem.

Once the application is done using the control, the interface must be released with code like this:

if (m_pIInternetMail)
 m_pIInternetMail->Release();

Each control that is created has a reference count which is used to keep track of how many times one
of its interfaces has been requested. When the reference count drops to zero, the control destroys
itself and releases the memory that was allocated. Failing to release the interface will prevent the
control from ever being destroyed and will result in a memory leak.

Control Event Handling

In languages like Visual Basic, using the events for a control simply involves adding code for the
desired event. Many of the details, such as connecting the control's event interface to the container, is
largely invisible to the programmer. However, when using a control in Visual C++, some extra work
does need to be done. This section will cover two basic methods, one specific to CWnd derived
controls which are placed in a dialog and another approach which uses a CCmdTarget derived class to
handle event notifications.

To create an event handler for a control that has been placed on a dialog form, open the form in the
resource editor, right click the control and select Events. This will open a dialog that lists the available
events for the control. Selecting one of the events adds the event to the dialog class with a name like
OnProgressInternetMail1. In the implementation for the dialog class, a section of code will be
added that looks like this:

 BEGIN_EVENTSINK_MAP(CImail1Dlg, CDialog)
 //{{AFX_EVENTSINK_MAP(CImail1Dlg)
 ON_EVENT(CImail1Dlg, IDC_INTERNETMAIL1, 4, OnProgressInternetMail1,
 VTS_VARIANT VTS_VARIANT VTS_VARIANT)
 //}}AFX_EVENTSINK_MAP
 END_EVENTSINK_MAP()

This is the event sink map which is used to map a function in the dialog class to the control's event
dispatch interface. The ON_EVENT macro defines the event sink with the dialog class name, the
control ID, the dispatch ID for the event, the event handler function and then the parameters that are
passed to the event. The three VTS_VARIANT macros specify that the event handler has three
VARIANT arguments. All of this code is automatically generated with one ON_EVENT for each control
event that was selected. Of the two approaches, this is the simplest but it depends on the fact that the
control has been placed on a dialog.

A more general purpose way to implement event handling is to derive a class from the CCmdTarget
class which will act as the event sink for the control. First, edit the StdAfx.h header file to include
afxctl.h. Next, create a new class for the project called CEventSink. It should be derived from
CCmdTarget with Automation support enabled (however, do not make it creatable by type ID). A
dialog may be displayed that it was unable to edit the object definition (ODL) file for the product.
Since your project may not have one, this is only a warning and can be ignored.

Open the EventSink.cpp implementation file and look towards the end of the file where there is a
section that looks something like this:

BEGIN_INTERFACE_MAP(CEventSink, CCmdTarget)
 INTERFACE_PART(CEventSink, IID_IEventSink, Dispatch)
END_INTERFACE_MAP()

This maps the CEventSink class to the event interface. This needs to be changed so that it is mapped
to the control's IInternetMailEvents interface, so change the second argument of the
INTERFACE_PART macro to the value DIID__IInternetMailEvents. This section should now look
like:

BEGIN_INTERFACE_MAP(CEventSink, CCmdTarget)
 INTERFACE_PART(CEventSink, DIID__IInternetMailEvents, Dispatch)
END_INTERFACE_MAP()

Next, decide what events handlers should be implemented for the control. This example will
implement all of them, but it isn't necessary if they aren't actually going to be used by the application.
The event handlers will be protected member functions of the CEventSink class and defined in
EventSink.h and implemented in EventSink.cpp:

void OnCancel();
void OnDelivered(VARIANT& varAddress, VARIANT& varMessageSize);
void OnError(VARIANT& varError, VARIANT& varDescription);
void OnProgress(VARIANT& varMessageSize, VARIANT& varMessageCopied,
 VARIANT& varPercent);
void OnRecipient(VARIANT& varAddress, VARIANT* pvarCancel);
void OnTimeout();

Once the event handler functions have been implemented, they need to be added to the dispatch
map. Look for the BEGIN_DISPATCH_MAP section in EventSink.cpp and add the definitions for the
events:

DISP_FUNCTION_ID(CEventSink,"OnCancel",1,OnCancel,VT_EMPTY,VTS_NONE)
DISP_FUNCTION_ID(CEventSink,"OnDelivered",2,OnDelivered,
 VT_EMPTY,VTS_VARIANT VTS_VARIANT)
DISP_FUNCTION_ID(CEventSink,"OnError",3,OnError,
 VT_EMPTY,VTS_VARIANT VTS_VARIANT)
DISP_FUNCTION_ID(CEventSink,"OnProgress",4,OnProgress,
 VT_EMPTY,VTS_VARIANT VTS_VARIANT VTS_VARIANT)
DISP_FUNCTION_ID(CEventSink,"OnRecipient",5,OnRecipient,
 VT_EMPTY,VTS_VARIANT VTS_PVARIANT)
DISP_FUNCTION_ID(CEventSink,"OnTimeout",6,OnTimeout,VT_EMPTY,VTS_NONE)

These declarations are similar to those used with the ON_EVENT macros in the previous example. The
VT_EMPTY type specifies that the event handler does not return a value. VTS_VARIANT specifies a
VARIANT argument, and VTS_PVARIANT specifies a pointer to a variant. VTS_NONE specifies that the
event doesn't have any arguments.

With the event handlers implemented, the next step is to connect them to the control. Include the
EventSink.h header file in the module where the control is being used and create two new member
variables for the class:

DWORD m_dwEventSink;
CEventSink* m_pEventSink;

Next, an instance of the CEventSink class needs to be created and then the sink dispatch interface
needs to be connected to the control using the AfxConnectionAdvise function:

// Create an instance of the event sink class
m_pEventSink = new CEventSink();

// Get a pointer to the sink IDispatch interface
LPUNKNOWN pUnknownSink = m_pEventSink->GetIDispatch(FALSE);

// Connect the event source to the sink
AfxConnectionAdvise(m_pIInternetMail,
 DIID__IInternetMailEvents,
 pUnknownSink,
 FALSE,
 &m_dwEventSink);

The last thing that needs to be done is to disconnect the event sink from the control when it is no
longer needed. This is done by calling AfxConnectionUnadvise, typically right before an instance of
the control is deleted:

if (m_pEventSink)
{
 LPUNKNOWN pUnknownSink = m_pEventSink->GetIDispatch(FALSE);

 AfxConnectionUnadvise(m_pIInternetMail,
 DIID__IInternetMailEvents,
 pUnknownSink,
 FALSE,
 m_dwEventSink);

 delete m_pEventSink;
 m_pEventSink = NULL;
 m_dwEventSink = 0;
}

With this code, the application is now wired to receive event notifications from the control. Keep in
mind that because the instance of the CEventSink class was created on the heap, failure to destroy
the sink will cause a memory leak in the application.

Catalyst Internet Mail 4.0 Technical Information

Component Information

Filename CSIMXCTL.OCX
Version 4.00.0023
ProgID SocketTools.InternetMail
ClassID 9E27D964-DFF7-44EB-91CB-CA251B6449C7
Threading Model Apartment
Help Filename CSIMXCTL.CHM
Dependencies None

Platform Compatibility

The Internet Mail control is a 32-bit ActiveX component compatible with Windows 95, Windows 98,
Windows ME, Windows NT 4.0 SP6, Windows 2000 and Windows XP. Note that Windows 95, Windows
NT 3.51 and versions of Windows NT 4.0 prior to Service Pack 6 are not supported, however the
control may function on those platforms.

Language Compatibility

The Internet Mail control is compatible with most languages which provide support for ActiveX or
Component Object Model (COM) objects. Supported languages include Microsoft Visual Basic 5.0 or
later, Visual FoxPro 5.0 or later and Visual C++ 6.0 or later. Other languages such as Delphi and
PowerBuilder also provide support for the use of ActiveX controls with their development tools.
Scripting languages which support referencing or creating instances of COM objects can also use the
control. Refer to the Initialize method in the technical reference for more information about using the
control in a scripting environment.

Redistribution Requirements

It is recommended that applications which redistribute CSIMXCTL.OCX install the control in the
Windows system directory, either \Windows\System or \Windows\System32 depending on the
platform. The control should be installed as a shared component which could be potentially locked (in
use by another application), and the installation software should ensure that it does not overwrite a
later version of the control.

If the control is being installed manually on a system, it will need to be registered using the
RegSvr32.exe utility. If the application returns an error that it was unable to load or create an
instance of the control, the most likely cause is that it was not registered after it was installed.

Windows XP, Windows 2000, Windows ME and Windows 98 SE support COM redirection, which enables
an application to isolate the components that it uses, ensuring that the same version of the
component which was used to build the application is loaded when the program is executed. To
activate COM redirection, create an empty file named after the executable with a .local extension. For
example, if the program is named MyApp.exe then an empty file named MyApp.exe.local should be
created in the same directory as MyApp.exe. This binds the application to the local version of any
components or libraries which are installed in the same directory as the application. When the
component or library is loaded, Windows will first search the application's directory, and then uses the
standard search rules for locating the file. Note that COM redirection is not supported on Windows 95
or Windows 98.

Catalyst Internet Mail 4.0 Technical Reference

Description

The Catalyst InternetMail control enables a developer to create, send and retrieve e-
mail messages. The control implements the Simple Mail Transfer Protocol (SMTP) for
sending messages, the Post Office Protocol (POP3) for retrieving messages from a
mail server and the Multipurpose Internet Mail Extensions (MIME) standard for
composing messages.

Reference

▪ Properties
▪ Methods
▪ Events
▪ Errors

File Name

CSIMXCTL.OCX

Object Type

InternetMail

Requirements

This components can be used with any Microsoft Windows development language or
scripting tool that supports ActiveX controls. It is designed for the 32-bit Windows
platform, and is supported on Windows 98, Windows ME, Windows NT 4.0, Windows
2000 and Windows XP.

Distribution

When you redistribute your application that uses the control, it is recommended that
you install the control in the Windows system directory. ActiveX controls must be
registered on the target system, either by the installation program or using the
RegSvr32.exe utility.

Copyright

Copyright © 2002, Catalyst Development Corporation. All rights reserved.

―Properties―

Attachment Property

Return the name of the attached file in the current message part.

Syntax

object.Attachment

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The Attachment property returns the name of the file attachment in the current
part of a multipart message. When a new part is selected that contains an attached
file, the Attachment property is updated to reflect the attached file's name. If the
current message part does not contain a file attachment, this property will return an
empty string.

Data Type

String

Bcc Property

Return or set the list of addresses that should receive a blind copy of the current
message.

Syntax

object.Bcc [= value]

The Bcc property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies one or more addresses that a copy of the message will be

delivered to.
Remarks

The Bcc property is used to specify one or more addresses that a copy of the
message will be delivered to. Note that these addresses are not included in the
message header and cannot be viewed by the recipient.

Multiple addresses may be specified by separating them with a comma. Each address
must conform to the standard Internet address format.

Data Type

String

See Also

Cc Property, From Property, ReplyTo Property, To Property

Cc Property

Return or set the list of addresses that should receive a copy of the current message.

Syntax

object.Cc [= value]

The Cc property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies one or more addresses that a copy of the message will be

delivered to.
Remarks

The Cc property returns the list of addresses that received a copy of the current
message. If there is no current message, or the Cc header field is not defined, then
this property will return an empty string.

Setting the Cc property creates or changes the value of the Cc header field in the
message and specifies additional recipients of the message. Multiple addresses may
be specified by separating them with a comma. Each address must conform to the
standard Internet address format.

Data Type

String

See Also

Bcc Property, From Property, ReplyTo Property, To Property

CertificateExpires Property

Return the date and time that the server certificate expires.

Syntax

object.CertificateExpires

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The CertificateExpires property returns the date and time that the server
certificate expires. This property will return an empty string if a secure connection
has not been established with the server.

Data Type

String

See Also

CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property,
CertificateSubject Property, Secure Property

CertificateIssued Property

Return the date and time that the server certificate was issued.

Syntax

object.CertificateIssued

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The CertificateIssued property returns the date and time that the server certificate
was issued. This property will return an empty string if a secure connection has not
been established with the server.

Data Type

String

See Also

CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property,
CertificateSubject Property, Secure Property

CertificateIssuer Property

Returns information about the organization that issued the server certificate.

Syntax

object.CertificateIssuer

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The CertificateIssuer property returns a string that contains information about the
organization that issued the server certificate. The string value is a comma separated
list of tagged name and value pairs. In the nomenclature of the X.500 standard,
each of these pairs are called a relative distinguished name (RDN), and when
concatenated together, forms the issuer's distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the
application must parse the string returned by this property. Some of the common
tokens used in the distinguished name are:

Name Desciption
C The ISO standard two character country code
S The name of the state or province
L The name of the city or locality
O The name of the company or organization
OU The name of the department or organizational unit
CN The common name; with X.509 certificates, this is the domain name of the site the

certificate was issued for

This property will return an empty string if a secure connection has not been
established with the server.

Example

The following example demonstrates how to extract the value of a relative
distinguished name token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As String)
As String
 Dim strFieldValue As String
 Dim cchValue As Long Integer, cchFieldName As Long Integer
 Dim nOffset As Long Integer

 GetCertNameValue = ""
 cchValue = Len(strValue)
 cchFieldName = Len(strFieldName)

 If cchValue = 0 Or cchFieldName = 0 Then
 Exit Function
 End If

 nOffset = InStr(strValue, strFieldName & "=")

 If nOffset > 0 Then
 '
 ' If the field name was found in the string, then
 ' remove everything to the left of the token from
 ' the string
 '
 strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))
 '
 ' If the value is quoted, then strip off the leading
 ' quote and look for the ending quote in the string;
 ' otherwise look for the comma that marks the end of
 ' the field name/value pair
 '
 If Left(strFieldValue, 1) = Chr(34) Then
 strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
 nOffset = InStr(strFieldValue, Chr(34))
 Else
 nOffset = InStr(strFieldValue, ",")
 End If
 '
 ' If the offset is 0, then the name/value pair is
 ' the last token in the string; otherwise, remove
 ' everything to the right of that position
 '
 If nOffset > 0 Then
 strFieldValue = Left(strFieldValue, nOffset - 1)
 End If

 GetCertNameValue = strFieldValue
 End If

End Function

This function could then be used to return the name of the company who issued the
server certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = InternetMail1.CertificateIssuer
If Len(strIssuer) = 0 Then
 MsgBox "A secure connection has not been established"
Else
 strCompanyName = GetCertNameValue(strIssuer, "O")
 MsgBox "This certificate was issued by " & strCompanyName
End If

Data Type

String

See Also

CertificateExpires Property, CertificateIssued Property, CertificateStatus Property,
CertificateSubject Property, Secure Property

CertificateName Property

Return or set the location of the certificate name.

Syntax

object.CertificateName [= value]

The CertificateName property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the name of the client certificate which should be provided

to the server if requested.
Remarks

The CertificateName property specifies the name of a client certificate on the local
host which is used with a secure connection. If the property is set to an empty
string, then no client certificate will be provided to the server.

Data Type

String

See Also

Secure Property

CertificateStatus Property

Return the status of the server certificate.

Syntax

object.CertificateStatus

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The CertificateStatus property may return one of the following values:

Constant Value Description
mailCertificateNone 0 No certificate information is available. A secure

connection was not established with the server.
mailCertificateValid 1 The certificate is valid.
mailCertificateNoMatch 2 The certificate is valid, however the domain name

specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the ServerName property is set to
an IP address rather than a host name. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

mailCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

mailCertificateRevoked 4 The certificate has been revoked and is no longer valid. It
is recommended that the client application immediately
terminate the connection if this status is returned.

mailCertificateUntrusted 5 The certificate has not been issued by a trusted authority,
or the certificate is not trusted on the local host. It is
recommended that the client application immediately
terminate the connection if this status is returned.

mailCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has
completed, but prior to beginning a transaction. If a secure connection has not been
established, this property will return a value of zero.

Data Type

String

See Also

CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property,
CertificateSubject Property, Secure Property

CertificateStore Property

Return or set the location of the certificate store.

Syntax

object.CertificateStore [= value]

The CertificateStore property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the name of the certificate store which contains the client

certificate.
Remarks

The CertificateStore property specifies the name of the certificate store on the local
host which contains the client certificate. If the property is set to an empty string,
then the default certificate store will be used.

This property is only used when a secure connection has been established and a
client certificate name has been specified.

Data Type

String

See Also

Secure Property

CertificateSubject Property

Returns information about the organization that the server certificate was issued to.

Syntax

object.CertificateSubject

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The CertificateSubject property returns a string that contains information about
the organization that the server certificate was issued for. The string value is a
comma separated list of tagged name and value pairs. In the nomenclature of the
X.500 standard, each of these pairs are called a relative distinguished name (RDN),
and when concatenated together, forms the subject's distinguished name (DN). For
example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the
application must parse the string returned by this property. Some of the common
tokens used in the distinguished name are:

Name Description
C The ISO standard two character country code
S The name of the state or province
L The name of the city or locality
O The name of the company or organization
OU The name of the department or organizational unit
CN The common name; with X.509 certificates, this is the domain name of the site the

certificate was issued for

This property will return an empty string if a secure connection has not been
established with the server.

Data Type

String

See Also

CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property,
CertificateStatus Property, Secure Property

CipherStrength Property

Return the length of the key used by the encryption algorithm.

Syntax

object.CipherStrength

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The CipherStrength property returns the number of bits in the key used to encrypt
the secure data stream. Common values returned by this property are 40, 56 and
128. A key length of 40-bits is considered to be relatively insecure, while a key
length of 56-bit is considered moderate and 128-bit keys are considered to be very
secure. If this property returns a value of 0, this means that a secure connection has
not been established with the server.

Data Type

Long Integer

See Also

HashStrength Property, Secure Property, SecureCipher Property, SecureHash
Property, SecureKeyExchange Property, SecureProtocol Property

ContentID Property

Return or set the content identifier for the selected message part.

Syntax

object.ContentID [= value]

The ContentID property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which uniquely identifies the content in the current message part.

Remarks

The ContentID property returns the unique content identifier string for the current
message part. This multipart header field is not commonly used, and if undefined,
will return an empty string. If set, this will change the value of the Content-ID
header field in the current message part.

Data Type

String

See Also

ContentLength Property, ContentType Property

ContentLength Property

Returns the size of the data stored in the selected message part.

Syntax

object.ContentLength

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The ContentLength property returns the size of the current message part in bytes.
This property is read-only, and is automatically updated when the current message
part changes.

Data Type

Long Integer

See Also

ContentID Property, ContentType Property

ContentType Property

Return or set the content type of the selected message part.

Syntax

object.ContentType [= value]

The ContentType property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which identifies the content contained in the current message part.

Remarks

The ContentType property returns the MIME type for the currently selected
message part. The type string consists of a primary type and secondary sub-type
separated by a slash, followed by one or more optional parameters delimited by
semi-colons. For example:

text/plain; charset=us-ascii

The text designation indicates that this message part contains readable text, and the
plain sub-type indicates that the text does not contain any special encoding. The
optional parameter which follows the content type provides additional information
about the content. In this example, it specifies which character set should be used to
display the text. The two common character sets used are ISO-8859 and US-ASCII
(which is the default character set that is used if none is specified).

There are seven predefined, standard content types, each with their own sub-types.
The following table lists these types, along with some common sub-types that are
found in messages:

Type Sub-Types Description
text plain, richtext, html Indicates that the message part contains text. This is the most

common type found in mail messages; if no content type is
explicitly defined, then it is assumed to be plain text.

image gif, jpeg Indicates that the message part contains a graphics image.
audio basic, aiff, wav Indicates that the message part contains audio data; the basic

sub-type is 8-bit PCM encoded audio (commonly found with the
.au filename extension).

video mpeg, avi Indicates that the message part contains a video clip in the
specified format.

application octet-stream Indicates that the message part contains application specific
data, typically used with the octet-stream sub-type to indicate
binary file attachments for executable programs, compressed
file archives, etc.

message rfc822 Indicates that the message part contains a complete RFC 822
compliant message, complete with headers.

multipart mixed, alternative Indicates that this is part of a message that contains multiple
parts with different content types.

The three most common content types that are used in applications are text/plain for
the mail message body, application/octet-stream for binary file attachments and
multipart/mixed for messages that contain both text and attached files. For more
information about the different content types, refer to the Multipurpose Internet Mail
Extensions (MIME) standards document RFC 1521.

Data Type

String

See Also

ContentID Property, ContentLength Property

Date Property

Return or set the date for the current message.

Syntax

object.Date [= value]

The Date property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the date and time.

Remarks

The Date property returns the value of the Date header field in the current message.
Setting this property causes the Date field to be updated with the specified value.
When setting the date, any one of the following formats may be used:

Format Example
mm/dd/yy[yy] hh:mm[:ss] 03/01/98 12:00
yy[yy]/mm/dd hh:mm[:ss] 98/03/01 12:00
dd mmm yy[yy] hh:mm[:ss] 01 Mar 1998 12:00:00
mmm dd yy[yy] hh:mm[:ss] Mar 01 1998 12:00:00

Any extraneous information that may be included in the date string, such as the day
of the week, is ignored. In addition to the date and time, the string may also include
a time zone specification at the end. If no time zone is specified, the current time
zone is used.

When specifying a time zone, the value should either be prefixed by a plus sign (+)
to indicate that the time zone is to the east of GMT, or a minus sign (-) to indicates
that it's to the west. Four digits follow, with the first two indicating the number of
hours east or west of GMT, and the last two digits indicating the number of minutes.
Therefore, a value of -0800 means that the time zone is eight hours to the west of
GMT, or in other words, the Pacific time zone. Regardless of the format of the string
assigned to the property, it always returns the date in the same standard format.

Note that the Localize property affects how dates are processed by the control. If
enabled, dates are automatically adjusted for the local time zone. By default,
localization is disabled.

Data Type

String

See Also

Localize Property

Domain Property

Return or set the local domain name.

Syntax

object.Domain [= value]

The Domain property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the local domain name.

Remarks

The Domain property specifies the domain name of the local host, and is used to
identify the current system when sending messages. If this property is not defined,
then the local host name will be used.

Note that explicitly setting the Domain property to a value that does not match your
local host name may cause some mail servers to reject any messages that you
attempt to send.

Data Type

String

Encoding Property

Return or set the content encoding for the current message part.

Syntax

object.Encoding [= value]

The Encoding property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies type of encoding used.

Remarks

The Encoding property returns a string which specifies the method used for
encoding the current message part. Setting this property causes the Content-
Transfer-Encoding header value to be updated. The following values are commonly
used:

Type Description
7bit The default transfer encoding type, which consists of printable ASCII

characters.
8bit Printable ASCII characters, including those characters with the high-bit

set (as is common with the ISO Latin-1 character set); this encoding type
is not commonly used.

base64 The transfer encoding type commonly used to convert binary data into 7-
bit ASCII characters so that it may be transported safely through the mail
system.

binary All characters; binary transfer encoding is rarely used.

quoted-printable Printable ASCII characters, with non-printable or extended characters
represented using their hexadecimal equivalents.

x-uuencode A transfer encoding type similar in function to the base64 encoding
method.

Note that setting this property only updates the Content-Transfer-Encoding header
value. To control the actual encoding method used when attaching a file, see the
AttachFile method.

Data Type

String

See Also

ContentLength Property, ContentType Property, ExtractFile Method, AttachFile
Method

From Property

Return or set the address of the person who sent the message.

Syntax

object.From [= value]

The From property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the address of the sender.

Remarks

The From property returns the address of the person who sent the message. Setting
the property causes the From header field in the current message to be updated with
the new value.

Data Type

String

See Also

Bcc Property, Cc Property, ReplyTo Property, To Property

HashStrength Property

Return the length of the message digest that was selected.

Syntax

object.HashStrength

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The HashStrength property returns the number of bits used in the message digest
(hash) that was selected. Common values returned by this property are 128 and
160. If this property returns a value of 0, this means that a secure connection has
not been established with the server.

Data Type

Long Integer

See Also

CipherStrength Property, Secure Property, SecureCipher Property, SecureHash
Property, SecureKeyExchange Property, SecureProtocol Property

LastError Property

Return or set the last error code.

Syntax

object.LastError [= value]

Part Description
object An object expression that evaluates to an InternetMail object.
value A integer which specifies an error code.

Remarks

The LastError property can be read to determine the last error that occurred for this
instance of the object. If a value is assigned to this property, it must either be zero
(to clear the error) or a valid error code, which will cause the object to raise the
specified error.

Data Type

Long Integer

See Also

OnError Event

LastErrorString Property

Return a description of the last error that occurred.

Syntax

object.LastErrorString

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The LastErrorString property returns a string that contains a description of the last
error that occurred.

Data Type

String

See Also

LastError Property

LastMessage Property

Return the number of the last message available on the server.

Syntax

object.LastMessage

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The LastMessage property returns the last message available on the server. Note
that unlike the MessageCount property, this value remains constant even when a
message is deleted.

Data Type

Long Integer

See Also

Message Property, MessageCount Property, MessageSize Property

Library Property

Return or set the file name of the Windows Sockets networking library.

Syntax

object.Library [= value]

The Library property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
dllname A string which specifies the name of the Windows Sockets library.

Remarks

The Library property returns the full pathname of the Windows Sockets library
loaded by the control. Setting the property to the file name of an alternate DLL
causes that library to be loaded. By default, the library WSOCK32.DLL is
automatically loaded when any network function is called.

This should be the first property set by the control when it is loaded. Attempting to
set this property after a library has already been loaded will generate an error.

Data Type

String

LocalAddress Property

Return the Internet address of the local host.

Syntax

object.LocalAddress

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The LocalAddress property returns the Internet address of the local host as a string
in dotted notation. If there is an active connection to a server, then the return value
will depend on the network interface that was used to establish the connection. If
there isn't a connection, then the default address for the local host will be returned.

Data Type

Long Integer

See Also

LocalName Property

Localize Property

Enable or disable message localization.

Syntax

object.Localize [= { True | False }]

The object is an expression that evaluates to an InternetMail object. The property
returns a boolean value.

Remarks

The Localize property is used to enable or disable localization features of the object.
Currently this only affects the way in which dates are processed. If set to True, the
date and time will be adjusted for the local time zone when setting and reading the
Date property. The default value for this property is False.

Data Type

Boolean

See Also

Date Property

LocalName Property

Return the Internet domain name of the local host.

Syntax

object.LocalName

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The LocalName property returns the Internet domain name for the local host. If
there is an active connection to a server, then the domain name will depend on the
network interface that was used to establish the connection. If there isn't a
connection, then the default domain name for the local host will be returned.

Data Type

String

See Also

LocalAddress Property, Resolve Method

MailboxSize Property

Return the size of the current mailbox in bytes.

Syntax

object.MailboxSize

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The MailboxSize property returns the combined size of all of the available messages
in the current mailbox. Note that as messages are deleted from the mailbox, this
property value will decrease.

Data Type

Long Integer

Mailer Property

Return or set the name of the mailer application.

Syntax

object.Mailer [= value]

The Mailer property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the name of application.

Remarks

The Mailer property returns the value of the X-Mailer header field in the current
message. This is typically used to identify the application that created the message,
however it is not required that this be specified. If the header field is not present in
the message, this property will return an empty string. Setting this property will
change the value of the X-Mailer header. If the property is set to an empty string,
the header will be removed from the message.

Data Type

String

See Also

GetHeader Method, SetHeader Method

Message Property

Return or set the current message headers and text.

Syntax

object.Message [= value]

The Message property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the complete message.

Remarks

The Message property returns the current message, including the headers and all
message parts, as a string. Setting this property will cause the current message to
be cleared and replaced by the new value. The string contents must follow the
standard specifications for a message. If the property is set to an empty string, the
current message is cleared.

Note that setting the Message property will cause the value of the Bcc property to
be reset to an empty string.

Data Type

String

MessageCount Property

Return the number of messages available on the server.

Syntax

object.MessageCount

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The MessageCount property returns the number of messages available to be
retrieved from the mail server. When a message is deleted from the mailbox, this
value will decrease. To determine the highest valid message number, regardless of
any deleted messages, use the LastMessage property.

Data Type

Long Integer

See Also

LastMessage Property, Message Property, MessageSize Property

MessageID Property

Return a unique identifier for the current message.

Syntax

object.MessageID

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The MessageID property returns the value of the Message-ID header field, a string
which is assigned by the mail server to uniquely identify the current message.

Data Type

String

See Also

GetHeader Method

MessageIndex Property

Return or set the current message number on the server.

Syntax

object.MessageIndex [= value]

The MessageIndex property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A long integer which specifies the message number on the server.

Remarks

The MessageIndex property sets or returns the current message number on the
server. Message numbers range from 1 through the number of messages available
on the server, as returned by the LastMessage property. Setting the
MessageIndex property to an invalid message number will generate an error.

Data Type

Long Integer

See Also

MessageCount Property, MessageSize Property

MessagePart Property

Return or set the current part in a multipart message.

Syntax

object.MessagePart [= part]

Part Description
object An object expression that evaluates to an InternetMail object.
part A long integer which specifies the message part.

Remarks

The MessagePart property returns the current message part index. All messages
have at least one part, which consists of one or more header fields, followed by the
body of the message. The default part, part 0, refers to the main message header
and body. If the message contains multiple parts (as with a message that contains
one or more attached files), the MessagePart property can be set to refer to that
specific part of the message.

Messages with file attachments typically consist of a message part which describes
the contents of the attachment, followed by the attachment itself. For a message
with one attached file, there would be a total of three parts. Part 0 would refer to the
main message part, which contains the headers such as From, To, Subject, Date and
so on. For multipart messages, part 0 typically does not have a message body, since
any text is usually created as a seperate part (for those messages that do not
contain multiple parts, the part 0 body contains the text message). Part 1 would
contain the text describing the attachment, and part 2 would contain the attachment
itself. If the attached file is binary, then the transfer encoding type would usually be
base64.

Data Type

Long Integer

See Also

ContentType Property, ContentLength Property, Encoding Property, MessageParts
Property

MessageParts Property

Return the number of parts in the current message.

Syntax

object.MessageParts

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The MessageParts property returns the number of parts in the current message. All
messages have at least one part, referenced as part 0. Multipart messages will
consist of additional parts which may be accessed by setting the MessageParts
property.

Data Type

Long Integer

See Also

MessagePart Property, AttachFile Method, ExtractFile Method, ExportMessage Method

MessageSize Property

Return the size of the current message in bytes.

Syntax

object.MessageSize

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The MessageSize property returns the size of the current message in bytes. The
size includes the header and body portion of the message.

Data Type

Long Integer

See Also

Message Property, MessageCount Property

MessageText Property

Return or change the text in the current message part.

Syntax

object.MessageText [= value]

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the new message text.

Remarks

The MessageText property returns the body of the current message part. Setting
this property replaces the entire message body with the new text. Note that setting
the property to an empty string deletes the body of the current message part, but
does not delete the message part itself.

Data Type

String

MessageUID Property

Return the UID for the current message on the mail server.

Syntax

object.MessageUID

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The MessageUID property returns a string which uniquely identifies the message on
the server. The identifier is assigned by the mail server, and retains the same value
across multiple client sessions. This value is typically used when the client wants to
leave a message on the mail server, but does not wish to retrieve the message
contents multiple times. For example, the client can store the UID for each message
that it retrieves, but does not delete from the server. The next time that it connects
to the mail server, it compares the UID of a message against the stored values. If
there is a match, the client knows that the message has already been retrieved, and
does not need to do so again.

This property requires that the mail server support the optional UIDL command. If
the command is not supported, this property will always return an empty string.
Note that the UID for the message comes from the mail server and is not the same
as the Message-ID header field in the message itself.

Data Type

String

NameServer Property

Return or set the Internet address for a nameserver.

Syntax

object.NameServer(index) [= value]

The NameServer property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
index An integer which specifies the nameserver.
value A string which specifies the new server address.

Remarks

The NameServer property array is used to specify one or more nameservers. The
address value must be an Internet address in dot notation. The index specifies which
nameserver to set or return a value for. There may be up to four nameservers
defined for any single instance of the object.

A nameserver is a computer which converts a domain name, such as microsoft.com,
into an IP address which can be used to establish a connection to a remote server. In
addition to mapping domain names, nameservers also can return information about
what servers are responsible for handling mail messages for a given domain. These
servers are called "mail exchanges" and there may be more than one mail exchange
for a domain, each with its own assigned priority. This information is used by the
SendMessage method to determine the address of the appropriate SMTP server in
order to deliver the message to the specified recipient.

If no nameservers are specified, then the default nameservers for the local host will
be used. For those systems which use dial-up connections to the Internet, this
requires that the system have an active connection established before this object is
initialized.

Data Type

String

Options Property

Return or set the options for the current object.

Syntax

object.Options [= value]

The Options property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A long integer which specifies one or more options.

Remarks

The Options property returns or modifies the options used for retrieving and
sending messages. The value is represented as one or more bitflags which may be
combined using the logical or operator. The following options are defined:

Constant Description
mailOptionNoStartTLS For secure POP3 and SMTP connections only; prevents the use of

the STARTTLS command which is used to negotiate a secure
session. This option should only be used if required by the server.

mailOptionAPOP Causes the APOP authentication method to be used when
connecting to a POP3 mail server. The default is to use standard
password authentication.

mailOptionAllHeaders Preserves all headers in the message when it is exported,
including the Received and Return-Path headers which are
normally excluded.

mailOptionKeepOrder Preserves the order of the headers when it is exported; by default,
some headers may be re-ordered.

mailOptionNotify Notify the sender of the delivery status of the message, if the
server supports delivery status notification. This option is a
combination of the mailNotifySuccess, mailNotifyFailure,
mailNotifyDelay and mailReturnHeaders options.

mailNotifySuccess If the mail server supports delivery status notification, this causes
a message to be returned to the sender once it has been
successfully delivered.

mailNotifyFailure If the mail server supports delivery status notification, this causes
a message to be returned to the sender if it could not be
delivered.

mailNotifyDelay If the mail server supports delivery status notification, this causes
a message to be returned to the sender if delivery has been
delayed.

mailReturnHeaders If the mail server supports delivery status notification, this causes
a message to be returned which contains the headers of the
message that was sent.

mailReturnMessage If the mail server supports delivery status notification, this causes
a message to be returned which contains the complete message
that was sent.

Data Type

Long Integer

Organization Property

Return or change the text in the current message part.

Syntax

object.Organization [= name]

The Organization property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
name A string which specifies the organization name.

Remarks

The Organization property returns the name of the organization that sent the
current message. Setting this property updates the specified header value. Note that
many mailers do not generate an Organization header field, in which case the
property value will be an empty string.

Data Type

String

See Also

GetHeader Method, SetHeader Method

Password Property

Return or set the password for the current user.

Syntax

object.Password [= value]

The Password property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the current user password.

Remarks

The Password property specifies the password used to authenticate the user. If the
property is not explicity set, then an application must provide the password to the
Connect method. Once the connection has been established, this property will be
updated with the appropriate value.

Data Type

String

See Also

UserName Property, Connect Method

Priority Property

Return or set the current message priority.

Syntax

object.Priority [= name]

The Priority property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
name A string which specifies the message priority.

Remarks

The Priority property returns the current priority for the message. Setting this
property value causes the X-Priority header to be updated with the specified value.

There is no strict standard for specifying message priority. The convention is to use a
number from 1-5, with 1 indicating the highest priority, 3 as normal priority and 5 as
the lowest priority. Some mailers follow the number with a space and then text that
describes the priority level.

Data Type

String

See Also

GetHeader Method, SetHeader Method

Recipient Property

Return the address of a message recipient.

Syntax

object.Recipient(index)

The Recipient property array syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
index An integer which specifies the recipient.

Remarks

The Recipient property array returns the e-mail address of one of the recipients of
the current message, as specified by the index argument. This property enables an
application to enumerate all of the recipient addresses for the current message
without having to parse the individual To, Cc and Bcc property values. Note that this
property array is read-only; to change the recipients for the current message you
must set the To, Cc or Bcc properties.

The index argument specifies which address to return, with a base value of zero up
to the number of recipients.

The string returned by the Recipient property contains only the actual e-mail
address and does not include the name of the recipient or any comments that may
have been included with the address. For example, if the To property is set to "John
Doe <jdoe@company.com>" then the Recipient property would return a value of
"jdoe@company.com" for that address.

Example

The following example enumerates all of the recipients for the current message and
adds them to a listbox:

 For nIndex = 0 To InternetMail1.Recipients
 List1.AddItem InternetMail1.Recipient(nIndex)
 Next

Data Type

String

See Also

Bcc Property, Cc Property, Recipients Property, To Property

Recipients Property

Return the number of recipients for the current message.

Syntax

object.Recipients

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The Recipients property returns the number of recipients for the current message.
This value can be used in conjunction with the Recipient property array to
enumerate the recipient e-mail addresses for the current message.

Example

The following example enumerates all of the recipients for the current message and
adds them to a listbox:
 For nIndex = 0 To InternetMail1.Recipients
 List1.AddItem InternetMail1.Recipient(nIndex)
 Next

Data Type

Long Integer

See Also

Recipient Property

RelayServer Property

Return or set the host name or address of a relay server.

Syntax

object.RelayServer [= value]

The RelayServer property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies a host name or IP address.

Remarks

The RelayServer property is used to specify an alternate mail server which will
deliver messages for the current user.

Normally, when the SendMessage method is used, the recipient address is used to
determine what mail server is responsible for accepting messages for that user.
However, under some circumstances this may not be desirable or even possible. For
example, many Internet Service Providers (ISPs) require that customers send all
messages through their servers and block any attempt to establish a direct
connection with another mail server. Setting the RelayServer property to the host
name or address of the ISP mail server will cause all messages to be relayed through
that server rather than directly to the recipient.

Note that using a mail server as a relay without the permission of the organization or
individual who owns that server may violate Acceptable Use Policies and/or Terms of
Service agreements with your service provider.

Data Type

String

See Also

LocalName Property, Resolve Method

RelayPort Property

Return or set the port number for the specified relay server.

Syntax

object.RelayPort [= value]

The RelayPort property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A long integer which specifies the port number.

Remarks

The RelayPort property defines the port number which is used to establish a
connection with the mail server. This property is used in conjunction with the
RelayServer property to specify an alternate mail server which is responsible for
delivering messages for the current user.

If this property is not set, the default SMTP port will be used when connecting to a
relay mail server.

Data Type

Long Integer

See Also

RelayServer Property

ReplyTo Property

Return or set the address of the person who should receive replies to this message.

Syntax

object.ReplyTo [= value]

The ReplyTo property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies a return address.

Remarks

The ReplyTo property returns the address of the user who should receive replies to
the current message. Setting this property updates the Reply-To header field with
the specified value.

Data Type

String

See Also

Bcc Property, Cc Property, From Property, To Property

ReturnReceipt Property

Return or set the address of the person who should receive a message indicating
that the message has been read.

Syntax

object.ReturnReceipt [= value]

The ReturnReceipt property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies an address.

Remarks

The ReturnReceipt property returns the address of the person who should receive a
message indicating that the current message has been read. Setting this property
updates the Disposition-Notification-To header field with the specified value.

Setting the ReturnReceipt property does not automatically cause an
acknowledgement to be returned to the sender. An application is responsible for
checking to make sure the header field contains a valid address and then generating
the return receipt message.

Data Type

String

Secure Property

Specify if a connection to the server is secure.

Syntax

object.Secure [= { True | False }]

The object is an expression that evaluates to an InternetMail object. The property
returns a boolean value.

Remarks

The Secure property determines if a secure connection is established to the server.
The default value for this property is False, which specifies that a standard
connection to the server is used. To establish a secure connection, the application
must set this property value to True prior to calling the Connect method. Once the
connection has been established, the client may retrieve messages from the server
as with standard connections.

It is strongly recommended that any application that sets this property to True use
error handling to trap any errors that may occur.

If the control is unable to initialize the security libraries, or otherwise cannot create a
secure session for the client, an error will be generated when this property value is
set.

Data Type

Boolean

Example

The following example establishes a secure connection to a server and retrieves a
message:
 '
 ' Set the Secure property to True, which tells the
 ' component to initialize the security interface and
 ' attempt to establish a secure connection
 '
 On Error Resume Next: Err.Clear
 InternetMail1.Secure = True

 If Err.Number Then
 MsgBox "Unable to initialize the security interface"
 Exit Sub
 End If

 On Error GoTo 0

 nError = InternetMail1.Connect(strServerName, nServerPort, strUserName,
strPassword)
 If nError <> 0 Then
 MsgBox "Unable to connect to server " & strServerName, vbExclamation
 Exit Sub
 End If

 If InternetMail1.CertificateStatus <> mailCertificateValid Then
 nResult = MsgBox("The server certificate could not be validated" &
vbCrLf & _
 "Are you sure you wish to continue?", vbYesNo)

 If nResult = vbNo Then
 InternetMail1.Disconnect
 Exit Sub
 End If
 End If

 nError = InternetMail1.GetMessage(1)
 If nError <> 0 Then
 InternetMail1.Disconnect
 MsgBox "Unable to retrieve message from server " & strServerName
 Exit Sub
 End If

 InternetMail1.Disconnect

See Also

CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property,
CertificateStatus Property, CertificateSubject Property, CipherStrength Property,
HashStrength Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property, Connect Method

SecureCipher Property

Return the encryption algorithm used to establish the secure connection with the
server.

Syntax

object.SecureCipher

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The SecureCipher property returns an integer value which identifies the algorithm
used to encrypt the data stream. This property may return one of the following
values:

Constant Value Description
mailCipherNone 0 No cipher has been selected. This is not a secure connection

with the server.
mailCipherRC2 1 The RC2 block cipher was selected. This is a variable key

length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

mailCipherRC4 2 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

mailCipherDES 4 The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

mailCipherDES3 8 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

mailCipherSkipjack 16 The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

If a secure connection has not been established, this property will return a value of
zero.

Data Type

Long Integer

See Also

CipherStrength Property, HashStrength Property, Secure Property, SecureHash
Property, SecureKeyExchange Property, SecureProtocol Property

SecureHash Property

Return the message digest selected when establishing the secure connection with the
server.

Syntax

object.SecureHash

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The SecureHash property returns an integer value which identifies the message
digest algorithm that was selected when a secure connection is established. This
property may return one of the following values:

Constant Value Description
mailHashNone 0 No message digest algorithm has been selected. This is not a

secure connection with the server.
mailHashMD5 1 The MD5 algorithm was selected. This algorithm takes a message

of arbitrary length and produces a 128-bit message digest.
mailHashSHA 2 The SHA algorithm was selected. This algorithm produces a 160-

bit message digest.

If a secure connection has not been established, this property will return a value of
zero.

Data Type

Long Integer

See Also

CipherStrength Property, HashStrength Property, Secure Property, SecureCipher
Property, SecureKeyExchange Property, SecureProtocol Property

SecureKeyExchange Property

Return the key exchange algorithm used to establish the secure connection with the
server.

Syntax

object.SecureKeyExchange

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The SecureKeyExchange property returns an integer value which identifies the
key-exchange algorithm used when establishing a secure connection. This property
may return one of the following values:

Constant Value Description
mailKeyExchangeNone 0 No key exchange algorithm has been selected. This is

not a secure connection with the server.
mailKeyExchangeRSA 1 The RSA public key exchange algorithm has been

selected.
mailKeyExchangeKEA 2 The KEA public key exchange algorithm has been

selected. This is an improved version of the Diffie-
Hellman public key algorithm.

mailKeyExchangeDH 4 The Diffie-Hellman public key exchange algorithm has
been selected.

If a secure connection has not been established, this property will return a value of
zero.

Data Type

Long Integer

See Also

CipherStrength Property, HashStrength Property, Secure Property, SecureCipher
Property, SecureHash Property, SecureProtocol Property

SecureProtocol Property

Return the security protocol used to establish the secure connection with the server.

Syntax

object.SecureProtocol

The object is an expression that evaluates to an InternetMail object. The property
returns a long integer value.

Remarks

The SecureProtocol property returns an integer value which identifies the protocol
used to establish the secure connection. This property may return one of the
following values:

Constant Value Description
mailProtocolNone 0 No protocol has been selected. This is not a secure connection

with the server.
mailProtocolSSL2 1 The Secure Sockets Layer (SSL) version 2.0 protocol has

been selected.
mailProtocolSS3 2 The Secure Sockets Layer (SSL) version 3.0 protocol has

been selected.
mailProtocolPCT1 4 The Private Communication Technology (PCT) version 1.0

protocol has been selected.
mailProtocolTLS1 8 The Transport Layer Security (TLS) version 1.0 protocol has

been selected.

If a secure connection has not been established, this property will return a value of
zero.

Data Type

Long Integer

See Also

CipherStrength Property, HashStrength Property, Secure Property, SecureCipher
Property, SecureHash Property, SecureKeyExchange Property

ServerName Property

Return or set the host name of the current mail server.

Syntax

object.ServerName [= value]

The ServerName property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies a host name or address.

Remarks

The ServerName property returns the name of the mail server that the client is
connected to. Setting this property specifies the host name or Internet address for a
subsequent connection.

If the ServerName property is not explicity set, then an application must provide
the host name or address to the Connect method. Once the connection has been
established, this property will be updated with the appropriate value. If the server
uses a non-standard port number, it can be specified using the ServerPort property.

The mail server must support Post Office Protocol v3 (POP3) to retrieve messages.
Setting this property does not affect what server is used to deliver messages. See
the RelayServer and RelayPort properties to specify a mail server that is
responsible for relaying messages.

Data Type

String

See Also

LocalName Property, Resolve Method

ServerPort Property

Return or set the port number for the current mail server.

Syntax

object.ServerPort [= value]

The ServerPort property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A long integer which specifies a TCP port number.

Remarks

The ServerPort property returns the port number that was used to establish a
connection with the mail server. Setting this property specifies an alternate port
number to use for a subsequent connection. A value of zero specifies that the default
port should be used for the connection.

The mail server must support Post Office Protocol v3 (POP3) to retrieve messages.
Setting this property does not affect what server is used to deliver messages. See
the RelayServer and RelayPort properties to specify a mail server that is
responsible for relaying messages.

Data Type

Long Integer

See Also

RelayServer Property, RelayPort Property

Subject Property

Return or set the subject of the current message.

Syntax

object.Subject [= value]

The Subject property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the subject of the message.

Remarks

The Subject property returns the subject of the current message. Setting this
property updates the Subject header with the specified value. Note that not all
messages have subjects, in which case this property will return an empty string.

Data Type

String

See Also

GetHeader Method, SetHeader Method

ThrowError Property

Enable or disable error handling by the container of the control.

Syntax

object.ThrowError [= { True | False }]

The object is an expression that evaluates to an InternetMail object. The property
returns a boolean value.

Remarks

Error handling for methods of the control can be done in either of two different
styles, according to the value of this property.

If the ThrowError property is set to False, methods will not raise an exception if an
error occurs. Instead, the application should check the return value of the method
and report any errors based on that value. It is the responsibility of the application to
interpret the error code and take an appropriate action. This is the default value for
the property.

If the ThrowError property is set to True, any method which generates an error will
cause the component to raise an exception which must be handled or the application
will terminate.

Note that if an error occurs while a property is being read or written, an error will be
raised regardless of the value of this property. This property only controls how errors
are handled when calling methods.

Data Type

Boolean

See Also

LastError Property, OnError Event

Timeout Property

Return or set the amount of time until a blocking network operation is aborted.

Syntax

object.Timeout [= value]

The Timeout property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A long integer which specifies the time in seconds.

Remarks

The Timeout property controls the amount of time that the component will wait for
a network operation to complete before aborting the operation and returning an
error. A value of zero specifies that the component will wait an indefinite period of
time for the operation to complete. The default value for this property is sixty (60)
seconds. It may be required to increase this value if a slow or unreliable network
connection is being used.

Data Type

Long

TimeZone Property

Return or set the current timezone offset in seconds.

Syntax

object.TimeZone [= value]

The TimeZone property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A long integer which specifies timezone offset in seconds.

Remarks

The TimeZone property returns the current offset from UCT in seconds. Setting the
property changes the current timezone offset to the specified value. The value of this
property is initially determined by the date and time settings on the local system.

The TimeZone property value is used in conjunction with the Localize property to
control how message date and time localization is handled.

Data Type

Long

Example

The following code enables localization and changes the current timezone to Eastern
Standard, which is five hours (18,000 seconds) west of UCT:

InternetMail1.Localize = True
InternetMail1.TimeZone = (5 * 60 * 60)

See Also

Localize Property

To Property

Return or set the recipient of the current message.

Syntax

object.To [= value]

The To property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies one or more recipient addresses.

Remarks

The To property returns the list of addresses that received a copy of the current
message. If there is no current message, or the To header field is not defined, then
this property will return an empty string.

Setting the To property creates or changes the value of the To header field in the
message and specifies additional recipients of the message. Multiple addresses may
be specified by separating them with a comma. Each address must conform to the
standard Internet address format.

Data Type

String

See Also

Bcc Property, Cc Property, From Property, ReplyTo Property

Trace Property

Enable or disable network function level tracing.

Syntax

object.Trace [= { True | False }]

The object is an expression that evaluates to an InternetMail object. The property
returns a boolean value.

Remarks

The Trace property is used to enable or disable the tracing of network function calls
and is primarily used as a debugging tool. When enabled, each function call is logged
to a file, including the function parameters, return value and error code if applicable.
This facility can be enabled and disabled at run time, and the trace log file can be
specified by setting the TraceFile property. All function calls that are being logged
are appended to the trace file, if it exists. If no trace file exists when tracing is
enabled, the trace file is created.

The tracing facility is enabled or disabled for an entire process. This means that once
tracing is enabled for a given instance of the object, all of the function calls made by
the process will be logged.

If tracing is not enabled, there is no negative impact on performance or throughput.
Once enabled, application performance can degrade, especially in those situations in
which multiple processes are being traced or the trace file is fairly large. Since trace
files can grow very quickly, even with modest applications, it is recommended that
you delete the file when it is no longer needed.

Data Type

Boolean

See Also

TraceFile Property, TraceFlags Property

TraceFile Property

Return or specify the network function trace output file.

Syntax

object.TraceFile [= value]

The TraceFile property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies a valid file name.

Remarks

The TraceFile property is used to specify the name of the trace file that is created
when network function tracing is enabled. If this property is set to an empty string,
then a file named CSTRACE.LOG is created in the system's temporary directory. If no
temporary directory exists, then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is
created. Since function tracing is enabled per-process, the trace file is shared by all
instances of the object being used. Since trace files can grow very quickly, even with
modest applications, it is recommended that you delete the file when it is no longer
needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035]
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced; in this case,
it is Visual Basic 6.0. The second column identifies if the trace record is reporting
information, a warning, or an error. What follows is the name of the function being
called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is included in brackets.

If parameters are passed as integer values, they are recorded in decimal. If the
parameter or return value is a memory address, it is recorded as a hexadecimal
value preceded with "0x". Those functions which expect Internet addresses are
displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the
number following the colon represents the port number in host byte order. Note that
in the second line of the above example, the control is attempting to connect to a
system with the IP address 192.0.0.1 on port 1234.

Data Type

String

See Also

Trace Property, TraceFlags Property

TraceFlags Property

Return or set the current network function tracing flags.

Syntax

object.TraceFlags [= value]

The TraceFlags property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A long integer which specifies one or more trace flags.

Remarks

The TraceFlags property is used to specify the type of information written to the
trace file when network function tracing is enabled. The following values may be
used:

Value Constant Description
0 mailTraceInfo All function calls are written to the trace file. This is the

default value.
1 mailTraceError Only those function calls which fail are recorded in the trace

file.
2 mailTraceWarning Only those function calls which fail, or return values which

indicate a warning, are recorded in the trace file.
4 mailTraceHexDump All function calls are written to the trace file, plus all the

data that is sent or received is logged, in both ASCII and
hexadecimal format.

Since network function tracing is enabled per-process, the trace flags are shared by
all instances of the object being used.

Warnings are generated when a non-fatal error is returned by a network function.
For example, if data is being sent to the server and the error 10035 is returned, a
warning is generated since the application simply needs to attempt to write the data
at a later time.

Data Type

Long Integer

See Also

Trace Property, TraceFile Property

UserName Property

Return or set the current user name.

Syntax

object.UserName [= value]

The UserName property syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
value A string which specifies the current user name.

Remarks

The UserName property specifies the name used to authenticate the user. If the
property is not explicity set, then an application must provide the user name to the
Connect method. Once the connection has been established, this property will be
updated with the appropriate value.

Data Type

String

See Also

Password Property, Connect Method

Version Property

Return the current version of the object.

Syntax

object.Version

The object is an expression that evaluates to an InternetMail object. The property
returns a string value.

Remarks

The Version property returns the current version of the object. This can be used by
an application for validation purposes.

Data Type

String

―Methods―

AppendMessage Method

Append text to the current message part.

Syntax

object.AppendMessage(msgtext)

The AppendMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
msgtext A string which specifies the text to append.

Return Type

Long Integer

Remarks

The AppendMessage method appends the specified string to the end of the body of
text in the current message part. Each line of text contained in the string should be
terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the
end-of-line.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

AttachFile Method

Attach the specified file to the current message.

Syntax

object.AttachFile(filename [, options])

The AttachFile method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
filename A string which specifies the text to append.
options A long integer which specifies one or more options.

Return Type

Long Integer

Settings

The settings for options is:

Constant Description
mailAttachDefault The file attachment encoding is based on the file content type. Text

files are not encoded, and binary files are encoded using the standard
base64 algorithm. This is the default option for file attachments.

mailAttachBase64 The file attachment is always encoded using the standard base64
algorithm, even if the attached file is a plain text file.

mailAttachUucode The file attachment is always encoded using the standard uuencode
algorithm, even if the attached file is a plain text file.

mailAttachQuoted The file attachment is always encoded using quoted-printable
encoding. Note that this encoding method is only recommended for
text content, typically either as HTML or RTF.

Remarks

The AttachFile method attaches the specified file to the current message. If the
message already contains one or more file attachments, then it is added to the end
of the message. If the message does not contain any attached files, then it is
converted to a multipart message and the file is appended to the message.

The filename argument specifies the name of the file to be attached to the message.
If the file is empty or does not exist, an error will be returned.

The options argument specifies the type of encoding that will be applied to the
attachment. If this argument is not specified, then text files will not be encoded and
binary files will be encoded using the standard base64 algorithm.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

ContentType Property, ExtractFile Method

Cancel Method

Cancel the current operation.

Syntax

object.Cancel

The object placeholder represents an expression that evaluates to an InternetMail
object.

Return Type

Long Integer

Remarks

The Cancel method cancels the current operation, returning control to the
application. This method is typically used to either cancel the retrieval of a message
from the mail server, or the delivery of a message. Once the operation has been
canceled, the OnCancel event will fire.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

Reset Method, OnCancel Event

ChangePassword Method

Change the mailbox password for the specified user.

Syntax

object.ChangePassword(username, oldpass, newpass)

The ChangePassword method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
username A string which specifies the username.
oldpass A string which specifies the old password.
newpass A string which specifies the new password.

Return Type

Long Integer

Remarks

The ChangePassword method changes the password that will be used to
authenticate the specified user.

The username argument specifies the username for the mailbox. If this is the same
value as the UserName property, then successfully changing the password will
cause the Password property to be updated with the new password.

The oldpass argument specifies the current password for the user's mailbox. An error
will be returned if this is an empty string.

The newpass argument specifies the new password for the user's mailbox. An error
will be returned if this is an empty string, or if the old and new password are the
same value.

Note that in order to change the user's mailbox password, the server must be
running the poppass service on port 106, on the same server. Because passwords
are transmitted as clear text (unencrypted), this service is not considered secure and
may not be available.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

Password Property, UserName Property

ComposeMessage Method

Compose a new mail message.

Syntax

object.ComposeMessage(from, to [, cc] [, bcc] [, subject] [, msgtext] [, msghtml]
[, charset] [, enctype])

The ComposeMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
from A string which specifies the sender address.
to A string which specifies one or more recipient addresses.
cc A string which specifies one or more recipient addresses.
bcc A string which specifies one or more recipient addresses.
subject A string which specifies the subject of the message.
msgtext A string which specifies the text of the message.
msghtml A string which specifies optional HTML formatted text.
charset An integer value which specifies the message character set.
enctype An integer value which specifies the message encoding type.

Return Type

Long Integer

Settings

The settings for charset are:

Constant Description
mailCharsetUSASCII The default character set using US-ASCII which defines 7-bit

printable characters with values ranging from 20h to 7Eh.
mailCharsetISO8859_1 An 8-bit character set for most western European languages such

as English, French, Spanish and German. This character set is also
commonly referred to as Latin1.

mailCharsetISO8859_2 An 8-bit character set for most central and eastern European
languages such as Czech, Hungarian, Polish and Romanian. This
character set is also commonly referred to as Latin2.

mailCharsetISO8859_5 An 8-bit character set for Cyrillic languages such as Russian,
Bulgarian and Serbian.

mailCharsetISO8859_6 An 8-bit character set for Arabic languages. Note that the
application is responsible for displaying text that uses this character
set. In particular, any display engine needs to be able to handle the
reverse writing direction and analyze the context of the message to
correctly combine the glyphs.

mailCharsetISO8859_7 An 8-bit character set for the Greek langauge.
mailCharsetISO8859_8 An 8-bit character set for the Hebrew language. Note that similar to

Arabic, Hebrew uses a reverse writing direction. An application
which displays this character should be capable of processing bi-
directional text where a single message may include both right-to-
left and left-to-right languages, such as Hebrew and English.

mailCharsetISO8859_9 An 8-bit character set for the Turkish language. This character set
is also commonly referred to as Latin5.

The settings for enctype are:

Constant Description
mailEncoding7Bit Each character is encoded in one or more bytes, with each byte being

8 bits long, with the first bit cleared. This encoding is most commonly
used with plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of 20h to 7Eh.
Most e-mail messages are composed using 7-bit ASCII.

mailEncoding8Bit Each character is encoded in one or more bytes, with each byte being
8 bits long and all bits are used. 8-bit encoding may be used with
multi-byte character sets, although this encoding type is uncommon
in e-mail messages. It is recommended that quoted-printable
encoding be used for 8-bit character sets.

mailEncodingBinary Binary encoding is essentially the absence of any encoding performed
on the message data, and there is no presumption that the data
contains textual information. No character set localization or
conversion is performed on binary encoded data. This encoding type
is not recommended. Instead, binary data should be encoded using
the standard base64 algorithm.

mailEncodingQuoted Quoted-printable encoding is designed for textual messages where
most of the characters are represented by the ASCII character set
and is generally human-readable. Non-printable characters or 8-bit
characters with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable encoding is typically
used for messages which use character sets such as ISO-8859-1, as
well as those which use HTML.

mailEncodingBase64 Base64 encoding is designed to represent binary data in a form that
is not human readable but which can be safely exchanged with
servers that only accept 7-bit data. Base64 encoding is typically used
with file attachments.

mailEncodingUucode Uuencoding and uudecoding is a legacy encoding format that was
used before the MIME standard was established. This encoding
method has largely been replaced by base64 encoding, although it is
still commonly used for binary newsgroup postings on USENET.
Although this encoding format is supported, it is not officially part of
the MIME standard and its use in e-mail messages is discouraged.

Remarks

The ComposeMessage method creates a new mail message, or replaces the current
message if one already exists.

The from argument is required and specifies the sender's e-mail address. Only a
single address should be specified. After the message has been composed, the From
property will be updated with this value.

The to argument is required and specifies one or more recipient e-mail addresses.
Multiple e-mail addresses may be specified by separating them with commas. After
the message has been composed, the To property will be updated with this value.

The cc argument is optional and specifies one or more additional recipient addresses
that will receive a copy of the message. If this argument is not specified, then no Cc
header field will be created for this message. After the message has been composed,
the Cc property will be updated with this value.

The bcc argument is optional and specifies one or more additional recipient
addresses that will receive a copy of the message. Unlike the cc argument, these
recipients will not be included in the header of the message. If this argument is not
specified, then no blind carbon copies of the message will be sent. After the message
has been composed, the Bcc property will be updated with this value.

The subject argument is optional and specifies the subject for the message. If the
argument is not specified, then no Subject header field will be created for this
message. After the message has been composed, the Subject property will be
updated with this value.

The msgtext argument is optional and specifies the body of the message. Each line
of text contained in the string should be terminated with a carriage-return/linefeed
(CRLF) pair, which is recognized as the end-of-line. If the argument is not specified,
then the message will have an empty body unless the msghtml argument has been
specified.

The msghtml argument is optional and specifies an alternate HTML formatted
message. If the msgtext argument has been specified, then a multipart message will
be created with both plain text and HTML text as the alternative. This allows mail
clients to select which message body they wish to display. If the msgtext argument
is not specified or is an empty string, then the message will only contain HTML.
Although this is supported, it is not recommended because older mail clients may be
unable to display the message correctly.

The charset and enctype arguments are optional and specify the character set and
encoding type for the message text. The default is for the message to use the
standard US-ASCII character set and 7-bit encoding. Note that if an 8-bit character
set is selected, the default encoding type will be set to quoted-printable.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Example

The following example composes a message and sends it to the specified recipients:

 Dim nError As Long

 nError = InternetMail1.ComposeMessage(comboFrom.Text, _
 editTo.Text, _
 editCc.Text, _
 editBcc.Text, _
 editSubject.Text, _
 editMessage.Text)
 If nError <> 0 Then
 MessageBox "Unable to compose message", vbExclamation
 Exit Sub
 End If

 nError = InternetMail1.SendMessage()

 If nError <> 0 Then
 MsgBox "Unable to send message", vbExclamation
 Exit Sub
 End If

See Also

Bcc Property, Cc Property, Encoding Property, From Property, MessageText Property,
Subject Property, To Property

Connect Method

Establish a connection with the specified mail server.

Syntax

object.Connect([server] [, port] [, username] [, password] [, timeout] [, options])

The Connect method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
server A string which specifies the host name or IP address of the mail server.
port A long integer which specifies the mail server port number.
username A string which specifies the username.
password A string which specifies the password.
timeout A long integer which specifies the timeout period in seconds.
options A long integer which specifies one or more options.

Return Type

Long Integer

Settings

The settings for options are:

Constant Description
mailOptionNoStartTLS For secure POP3 and SMTP connections only; prevents the use of the

STARTTLS command which is used to negotiate a secure session.
This option should only be used if required by the server.

mailOptionAPOP Causes the APOP authentication method to be used when connecting
to a POP3 mail server. The default is to use standard password
authentication.

Remarks

The Connect method is used to establish a connection with the specified mail server.
This is the first method that must be called prior to the application retrieving mail
messages using the GetMessage method.

If the Connect method is called when a connection already exists, the current
connection will be closed. This has the side-effect of causing any messages which
have been marked for deletion to be removed by the mail server.

Note that it is not required to call the Connect method to send messages since this
is handled internally by the component. For more information about sending
messages, see the SendMessage method and the RelayServer and RelayPort
properties.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Example

The following example connects to a mail server and retrieves each of the mail
messages, storing them in a file on the local system:

 Dim strFileName As String
 Dim nMessage As Long, nError As Long

 nError = InternetMail1.Connect(strServerName, , strUserName, strPassword)

 If nError <> 0 Then
 MsgBox "Unable to connect to " & strServerName & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If

 If InternetMail1.LastMessage = 0 Then
 MsgBox "The mailbox is currently empty", vbInformation
 InternetMail1.Disconnect
 Exit Sub
 End If

 For nMessage = 1 To InternetMail1.LastMessage
 strFileName = "c:\temp\msg" & Format(nMessage, "00000") & ".txt"
 nError = InternetMail1.StoreMessage(nMessage, strFileName)
 If nError <> 0 Then
 MsgBox "Unable to store message " & nMessage & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit For
 End If
 Next

 If nError = 0 Then
 MsgBox "Stored " & InternetMail1.LastMessage & " messages",
vbInformation
 End If

 InternetMail1.Disconnect

See Also

Disconnect Method, GetMessage Method, SendMessage Method, RelayPort Property,
RelayServer Property, Secure Property

ClearMessage Method

Clear the current message.

Syntax

object.ClearMessage

The object placeholder represents an expression that evaluates to an InternetMail
object.

Return Type

Long Integer

Remarks

The ClearMessage method clears the current message, releasing the memory
allocated for the message and any attachments. This will also reset the value of the
Bcc property back to an empty string.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

Bcc Property

CreatePart Method

Create a new message part in a multipart message.

Syntax

object.CreatePart([msgtext] [, charset] [, enctype])

The CreatePart method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
msgtext A string which specifies the message part text.
charset An integer value which specifies the message part character set.
enctype An integer value which specifies the message part encoding type.

Return Type

Long Integer

Settings

The settings for charset are:

Constant Description
mailCharsetUSASCII The default character set using US-ASCII which defines 7-bit

printable characters with values ranging from 20h to 7Eh.
mailCharsetISO8859_1 An 8-bit character set for most western European languages such

as English, French, Spanish and German. This character set is also
commonly referred to as Latin1.

mailCharsetISO8859_2 An 8-bit character set for most central and eastern European
languages such as Czech, Hungarian, Polish and Romanian. This
character set is also commonly referred to as Latin2.

mailCharsetISO8859_5 An 8-bit character set for Cyrillic languages such as Russian,
Bulgarian and Serbian.

mailCharsetISO8859_6 An 8-bit character set for Arabic languages. Note that the
application is responsible for displaying text that uses this character
set. In particular, any display engine needs to be able to handle the
reverse writing direction and analyze the context of the message to
correctly combine the glyphs.

mailCharsetISO8859_7 An 8-bit character set for the Greek language.
mailCharsetISO8859_8 An 8-bit character set for the Hebrew language. Note that similar to

Arabic, Hebrew uses a reverse writing direction. An application
which displays this character should be capable of processing bi-
directional text where a single message may include both right-to-
left and left-to-right languages, such as Hebrew and English.

mailCharsetISO8859_9 An 8-bit character set for the Turkish langauge. This character set
is also commonly referred to as Latin5.

The settings for enctype are:

Constant Description
mailEncoding7Bit Each character is encoded in one or more bytes, with each byte being

8 bits long, with the first bit cleared. This encoding is most commonly
used with plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of 20h to 7Eh.
Most e-mail messages are composed using 7-bit ASCII.

mailEncoding8Bit Each character is encoded in one or more bytes, with each byte being
8 bits long and all bits are used. 8-bit encoding may be used with
multi-byte character sets, although this encoding type is uncommon
in e-mail messages. It is recommended that quoted-printable
encoding be used for 8-bit character sets.

mailEncodingBinary Binary encoding is essentially the absence of any encoding performed
on the message data, and there is no presumption that the data
contains textual information. No character set localization or
conversion is performed on binary encoded data. This encoding type
is not recommended. Instead, binary data should be encoded using
the standard base64 algorithm.

mailEncodingQuoted Quoted-printable encoding is designed for textual messages where
most of the characters are represented by the ASCII character set
and is generally human-readable. Non-printable characters or 8-bit
characters with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable encoding is typically
used for messages which use character sets such as ISO-8859-1, as
well as those which use HTML.

mailEncodingBase64 Base64 encoding is designed to represent binary data in a form that
is not human readable but which can be safely exchanged with
servers that only accept 7-bit data. Base64 encoding is typically used
with file attachments.

mailEncodingUucode Uuencoding and uudecoding is a legacy encoding format that was
used before the MIME standard was established. This encoding
method has largely been replaced by base64 encoding, although it is
still commonly used for binary newsgroup postings on USENET.
Although this encoding format is supported, it is not officially part of
the MIME standard and its use in e-mail messages is discouraged.

Remarks

The CreatePart method creates a new message part. If the current message is a
simple RFC822 message, then this method converts it to a MIME multipart message.
The current message part will be set to the new part that was just created.

The msgtext argument is optional and specifies the body of the new message part.
Each line of text contained in the string should be terminated with a carriage-
return/linefeed (CRLF) pair, which is recognized as the end-of-line. If the argument
is not specified, then the message part will have an empty body.

The charset and enctype arguments are optional and specify the character set and
encoding type for the message text. The default is for the message to use the
standard US-ASCII character set and 7-bit encoding.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

AttachFile Method, DeletePart Method

DeleteHeader Method

Delete a header field from the current message part.

Syntax

object.DeleteHeader(header)

The DeleteHeader method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
header A string which specifies the message header to delete.

Return Type

Boolean

Remarks

The DeleteHeader method deletes the specified header field value from the current
message part.

DeleteMessage Method

Delete the specified message from the mail server.

Syntax

object.DeleteMessage([number])

The DeleteMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
number A long integer which specifies the message to delete.

Return Type

Long Integer

Remarks

The DeleteMessage method marks the specified message for deletion. If the
optional message number is not specified, then the current message is deleted. Once
a message has been marked as deleted, any attempt to access it will result in an
error.

The message will not actually be removed from the server until the Disconnect
method is called or the InternetMail object is unloaded. To prevent messages which
have been marked for deletion from actually being removed from the mailbox, call
the Reset method.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

DeleteMessage Method, Disconnect Method, GetHeader Method, GetMessage Method,
Reset Method

DeletePart Method

Delete the specified message part in the current message.

Syntax

object.DeletePart([part])

The DeletePart method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
part A long integer which specifies the message part to delete.

Return Type

Long Integer

Remarks

The DeletePart method deletes the specified message part in the current message.
If the optional message part is not specified, then the current message part is
deleted.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

AttachFile Method, CreatePart Method

Disconnect Method

Disconnect from the mail server.

Syntax

object.Disconnect

The object placeholder represents an expression that evaluates to an InternetMail
object.

Return Type

Long Integer

Remarks

The Disconnect method causes all messages that have marked for deletion to be
removed by the server and the network connection is closed.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

Connect Method

ExportMessage Method

Export the current message to a text file.

Syntax

object.ExportMessage(filename [, options])

The ExportMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
filename A string which specifies the name of the file to contain the message.
options A long integer which specifies one or more options.

Return Type

Long Integer

Settings

The settings for options are:

Constant Description
mailOptionAllHeaders Preserves all headers in the message when it is exported, including

the Received and Return-Path headers which are normally
excluded.

mailOptionKeepOrder Preserves the order of the headers when it is exported; by default,
some headers may be re-ordered.

Remarks

The ExportMessage copies the current message to the specified file. If the file does
not exist it will be created, otherwise it will be overwritten with the contents of the
message.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

See Also

ExtractFile Method, ImportMessage Method

ExtractFile Method

Extract an attached file from the current message.

Syntax

object.ExtractFile(filename [, part])

The ExtractFile method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
filename A string which specifies the attached file name.
part A long integer which specifies the message part.

Return Type

Long Integer

Remarks

The ExtractFile method extracts the attached file stored in the specified message
part, storing it in a file. If the optional message part argument is not specified, the
current message part is used. To determine if the current message part contains an
attachment and to determine its file name, check the value of the Attachment
property. An error will be returned if the specified message part does not contain a
file attachment.

This method will return value of zero if the action was successful. Otherwise, a non-
zero error code is returned which indicates the cause of the failure.

See Also

Attachment Property, ExportMessage Method

GetFirstHeader Method

Return the first header in the current message part.

Syntax

object.GetFirstHeader(header, value)

The GetFirstHeader method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
header A string which will contain the name of the header field.
value A string which will contain the value of the header field.

Return Type

Boolean

Remarks

The GetFirstHeader method allows an application to enumerate all of the headers
in the current message. If the current message part does not contain any header
fields, this method will return False.

Example

The following example enumerates all of the headers in the main part of the current
message and adds them to a listbox:

 Dim strHeader As String, strValue As String
 Dim bResult As Boolean

 bResult = InternetMail1.GetFirstHeader(strHeader, strValue)
 Do While bResult
 List1.AddItem strHeader & ": " & strValue
 bResult = InternetMail1.GetNextHeader(strHeader, strValue)
 Loop

See Also

MessagePart Property, GetHeader Method, GetNextHeader Method, SetHeader
Method

GetHeader Method

Return the value for the specified header in the current message part.

Syntax

object.GetHeader(header, value)

The GetHeader method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
header A string which specifies the name of the header field.
value A string which will contain the value of the header field.

Return Type

Boolean

Remarks

The GetHeader method is used to retrieve the value for a specific header in the
current message part. If the header field exists, the method will return True and the
value argument will contain the header value. If the header does not exist, the
method will return False.

If there are multiple headers with the same name, the first value will be returned. To
enumerate all of the headers in a message, including duplicate header fields, use the
GetFirstHeader and GetNextHeader methods.

See Also

MessagePart Property, GetFirstHeader Method, GetNextHeader Method, SetHeader
Method

GetNextHeader Method

Return the next header in the current message part.

Syntax

object.GetNextHeader(header, value)

The GetNextHeader method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
header A string which will contain the name of the header field.
value A string which will contain the value of the header field.

Return Type

Boolean

Remarks

The GetNextHeader method allows an application to enumerate all of the headers
in the current message. When all of the headers in the current message part have
been returned, this method will return False.

Example

The following example enumerates all of the headers in the main part of the current
message and adds them to a listbox:

 Dim strHeader As String, strValue As String
 Dim bResult As Boolean

 bResult = InternetMail1.GetFirstHeader(strHeader, strValue)
 Do While bResult
 List1.AddItem strHeader & ": " & strValue
 bResult = InternetMail1.GetNextHeader(strHeader, strValue)
 Loop

See Also

MessagePart Property, GetFirstHeader Method, GetHeader Method, SetHeader
Method

GetMessage Method

Retrieve the specified message from the mail server.

Syntax

object.GetMessage([number])

The GetMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
number A long integer which specifies the message to retrieve.

Remarks

The GetMessage method retrieves the specified message from the mail server. This
method will cause the current message to be replaced with the new message, and
the MessageIndex property will be updated with the new message number. If the
optional message number argument is not specified, then the value of the
MessageIndex property is used instead.

Note that unlike setting the MessageIndex property, which only causes the headers
for the specified message to be retrieved, the GetMessage method downloads the
complete message. The OnProgress event will fire periodically as the message is
retrieved, allowing an application to update its user interface if desired.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Example

The following example connects to a mail server and retrieves the first message:

 Dim nError As Long

 nError = InternetMail1.Connect(strServerName, , strUserName, strPassword)

 If nError <> 0 Then
 MsgBox "Unable to connect to " & strServerName & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If

 If InternetMail1.LastMessage = 0 Then
 MsgBox "The mailbox is currently empty", vbInformation
 InternetMail1.Disconnect
 Exit Sub
 End If

nError = InternetMail1.GetMessage(1)

 If nError <> 0 Then
 MsgBox "Unable to retrieve the message" & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Next

 InternetMail1.Disconnect

See Also

GetHeader Method, MessageIndex Method, OnProgress Event

ImportMessage Method

Import a new message from the specified text file.

Syntax

object.ImportMessage(filename)

The ImportMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
filename A string which specifies the name of the file to import from.

Return Type

Long Integer

Remarks

The ImportMessage method replaces the current message with the message
contained in the specified text file. Note that calling this method will result in the Bcc
property value being cleared.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

See Also

Bcc Property, AttachFile Method, ExportMessage Method, ExtractFile Method

Initialize Method

Initialize the component and load the networking library.

Syntax

object.Initialize([module] [, license] [, options] [, reserved])

The Initialize method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
module A string which specifies the name of the network module.
license A string which specifies the runtime license key.
options A reserved argument; this argument is currently unused.
reserved A reserved argument; this argument is currently unused.

Return Type

Long Integer

Remarks

The Initialize method explicitly loads and initializes the Windows Sockets
networking library. Typically this is not required because it's done automatically
when any control function is taken which requires network access, such as
attempting a connection to a remote host.

The module argument is the full pathname of the Windows Sockets library loaded by
the control. Setting the argument to the name of an appropriate library causes it to
be loaded. If this argument is not specified, or an empty string is passed as the
value, the default system Windows Sockets library is loaded.

The license argument specifies a runtime license key used to initialize the control.
Normally this argument is not needed, since the appropriate license key is used
when an instance of the control is created. However, if an instance of the control is
created using the CreateObject function, the Initialize method must be called with a
valid runtime license key. If the license key is omitted or passed as an empty string,
a development license must be installed on the local system.

The options and reserved arguments are unused and should not be specified.

A value of zero is returned if the library was initialized successfully. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Example

 '
 ' Create an instance of the InternetMail object
 '
 Set objMail = WScript.CreateObject("Catalyst.InternetMail")
 '
 ' Initialize the object, using the default Windows Sockets
 ' library and the specified runtime license key; if the key
 ' is not specified, the development license will be used
 '
 nError = objMail.Initialize("", CSTOOLS4_LICENSE_KEY)
 If nError <> 0 Then
 WScript.Echo "Unable to initialize the InternetMail object"
 WScript.Quit(1)
 End If

See Also

Uninitialize Method

ParseAddress Method

Parse an Internet e-mail address.

Syntax

object.ParseAddress(address)

The ParseAddress method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
address A string which specifies the address to be parsed.

Return Type

String

Remarks

The ParseAddress method parses a string which contains an e-mail address and
returns only the address portion, excluding any comments. An address may contain
comments enclosed in parenthesis, or may specify a name along with the address in
which case the address is enclosed in angle brackets. For example, consider the
following header field value:

"User Name" <user@domain.com> (This is a comment)

The ParseAddress method would return "user@domain.com" if passed the above
string, removing the name and any comments.

Note that the ParseAddress method will only parse a single address. If multiple
addresses are specified, they must be comma delimited and split prior to calling this
method.

Example

The following example parses all of the recipient e-mail addresses in the current
message, storing them in the strAddresses string array.

 Dim strAddresses() As String, strAddress As String
 Dim nIndex As Integer, nAddresses As Integer

 nAddresses = 0
 strAddresses = Split(InternetMail1.To & "," & _
 InternetMail1.Cc & "," & _
 InternetMail1.Bcc, ",")

 For nIndex = 0 To UBound(strAddresses)
 If Len(Trim(strAddresses(nIndex))) > 0 Then
 '
 ' The ParseAddress method will return an e-mail address
 ' or an empty string if the argument could not be parsed
 '
 strAddress = InternetMail1.ParseAddress(strAddresses(nIndex))
 If Len(strAddress) > 0 Then

strAddresses(nAddresses) = strAddress
nAddresses = nAddresses + 1

End If
 End If
 Next

ParseMessage Method

Parse the specified string, adding the contents to the current message.

Syntax

object.ParseMessage(msgtext)

The ParseMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
msgtext A string which specifies the message text to be parsed.

Return Type

Long Integer

Remarks

The ParseMessage method parses a string which contains message data, adding it
to the current message. This method is useful when the application needs to parse
an arbitrary block of text and add it to the current message. If the string contains
header fields, the values will be added to the message header. Once the end of the
header block is detected, all subsequent text is added to the body of the message.

Note that unlike the ImportMessage method, the ParseMessage method does not
clear the contents of the current message and may be called multiple times. Use the
ClearMessage method to clear the current message before calling ParseMessage if
necessary.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Example

The following example demonstrates the use of ParseMessage to parse multiple
blocks of data from a file. This example effectively does the same thing as calling the
ImportMessage method:

 InternetMail1.ClearMessage

 hFile = FreeFile()
 Open strFileName For Input As hFile
 nFileLength = LOF(hFile)

 Do While nFileLength > 0
 '
 ' Read the contents of the file in 1K blocks; note that
 ' this is intentionally inefficient to demonstrate
 ' multiple calls to the ParseMessage method.
 '
 cbBuffer = nFileLength: If cbBuffer > 1024 Then cbBuffer = 1024
 nFileLength = nFileLength - cbBuffer
 strBuffer = Input(cbBuffer, hFile)
 '
 ' Parse the string, adding to the current message
 '
 nError = InternetMail1.ParseMessage(strBuffer)
 If nError <> 0 Then
 MsgBox InternetMail1.LastErrorString, vbExclamation
 Exit Do
 End If

 Loop

 Close hFile

See Also

ClearMessage Method, ImportMessage Method

Reset Method

Reset the state of the component.

Syntax

object.Reset

The object placeholder represents an expression that evaluates to an InternetMail
object.

Return Type

None

Remarks

The Reset method resets the internal state of the component, releasing any memory
allocated for messages and/or network connections. If the application is connected to
a mail server, the connection will be terminated. If any messages were marked for
pending deletion, those messages will not be deleted.

See Also

Cancel Method

SendMessage Method

Send an e-mail message to one or more recipients.

Syntax

object.SendMessage([sender] [, recipient] [, message] [, options])

The SendMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
sender A string which specifies the e-mail address of the sender.
recipient A string which specifies one or more recipient e-mail addresses.
message A string which specifies a complete message, including headers.
options A long integer which specifies one or more options.

Return Type

Long Integer

Settings

The settings for options are:

Constant Description
mailOptionNoStartTLS For secure SMTP connections only; prevents the use of the STARTTLS

command which is used to negotiate a secure session. This option should
only be used if required by the server.

mailOptionNotify Notify the sender of the delivery status of the message, if the server
supports delivery status notification. This option is a combination of the
mailNotifySuccess, mailNotifyFailure, mailNotifyDelay and
mailReturnHeaders options.

mailNotifySuccess If the mail server supports delivery status notification, this causes a
message to be returned to the sender once it has been successfully
delivered.

mailNotifyFailure If the mail server supports delivery status notification, this causes a
message to be returned to the sender if it could not be delivered.

mailNotifyDelay If the mail server supports delivery status notification, this causes a
message to be returned to the sender if delivery has been delayed.

mailReturnHeaders If the mail server supports delivery status notification, this causes a
message to be returned which contains the headers of the message that
was sent.

mailReturnMessage If the mail server supports delivery status notification, this causes a
message to be returned which contains the complete message that was
sent.

Remarks

The SendMessage method sends the specified message to one or more recipients.
This method can be used in a number of different ways, depending on the arguments
specified by the caller.

The optional sender argument identifies the sender of the message and must be a
standard Internet e-mail address. If this argument is ommitted, then the address
specified by the From property will be used.

The optional recipient argument specifies one or more recipients of the message. If
this argument is ommitted, then the addresses listed in the Bcc, Cc and To
properties will be used to determine the recipients of the message.

The optional message argument specifies a complete e-mail message that will be
delivered. This must be a properly formatted message that conforms to the
standards for Internet e-mail. If this argument is ommitted, then the current
message is sent. If this argument is specified, but the sender and recipient
properties are ommitted, then the message will be parsed and the addresses will be
automatically determined by the values of the From, Cc and To header fields. Note
that specifying a message argument does not change the current message.

The options argument specifies one or more options for sending the message. If this
argument is ommitted, the value of the Options property will be used instead.

For each recipient listed, either as an argument to the method or in the message
itself, the SendMessage method will determine the appropriate mail exchange
server and deliver the message to that user. If the RelayServer and RelayPort
properties are defined, then all messages will be relayed through that specific server,
regardless of the recipient address. Note that the Secure property and related
options only affects connections to relay mail servers. See the RelayServer and
RelayPort properties for additional information.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

See Also

Bcc Property, Cc Property, From Property, Options Property, RelayPort Property,
RelayServer Property, Secure Property, To Property

SetHeader Method

Set the value of a header field in the current message part.

Syntax

object.SetHeader(header, value)

The SetHeader method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
header A string which specifies the name of the header field.
value A string which specifies the value of the header field.

Return Type

Boolean

Remarks

The SetHeader method creates or changes the value of the specified header field in
the current message part. If the header does not exist, it will be created with the
new value. If the header does exist, its current value will be replaced by the new
value.

See Also

MessagePart Property, GetFirstHeader Method, GetHeader Method, GetNextHeader
Method

StoreMessage Method

Store the specified message in a file.

Syntax

object.StoreMessage(number, filename)

The StoreMessage method syntax has the following parts:

Part Description
object An object expression that evaluates to an InternetMail object.
number A long integer which specifies the message to store.
filename A string which specifies the name of the file to store the message in.

Return Type

Long Integer

Remarks

The StoreMessage method retrieves the specified message from the mail server
and stores it in a file. The number argument specifies the message to retrieve and
the filename argument specifies the name of the file that the message will be stored
in.

For applications which need to store messages on the local system, the
StoreMessage method is somewhat more efficient than using the GetMessage and
ExportMessage methods to load and store the message. StoreMessage does not
attempt to analyze the message or change the current message contents.

This method will return a value of zero if the action was successful. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Example

The following example connects to a mail server and retrieves each of the mail
messages, storing them in a file on the local system:

 Dim strFileName As String
 Dim nMessage As Long, nError As Long

 nError = InternetMail1.Connect(strServerName, , strUserName, strPassword)

 If nError <> 0 Then
 MsgBox "Unable to connect to " & strServerName & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit Sub
 End If

 If InternetMail1.LastMessage = 0 Then
 MsgBox "The mailbox is currently empty", vbInformation
 InternetMail1.Disconnect
 Exit Sub
 End If

 For nMessage = 1 To InternetMail1.LastMessage
 strFileName = "c:\temp\msg" & Format(nMessage, "00000") & ".txt"
 nError = InternetMail1.StoreMessage(nMessage, strFileName)
 If nError <> 0 Then
 MsgBox "Unable to store message " & nMessage & vbCrLf & _
 InternetMail1.LastErrorString, vbExclamation
 Exit For
 End If
 Next

 If nError = 0 Then
 MsgBox "Stored " & InternetMail1.LastMessage & " messages",
vbInformation
 End If

 InternetMail1.Disconnect

See Also

GetMessage Method, ExportMessage Method

Uninitialize Method

Uninitialize the component and unload the networking library.

Syntax

object.Uninitialize

The object placeholder represents an expression that evaluates to an InternetMail
object.

Return Type

None

Remarks

The Uninitialize method terminates any connection established by the component
and unloads the networking library. This method is not typically used since this is
done automatically when the component is unloaded.

See Also

Initialize Method

―Events―

OnCancel Event

The OnCancel event is generated when an operation is canceled.

Syntax

Private Sub object_OnCancel ([Index As Integer])

Remarks

The OnCancel event is generated after an operation is canceled by calling the
Cancel method.

See Also

OnError Event, Cancel Method

OnDelivered Event

The OnDelivered event is generated after a message has been delivered.

Syntax

Private Sub object_OnDelivered([Index As Integer,] ByVal Address As Variant,
ByVal MessageSize As Variant)

Remarks

The OnDelivered event is generated after a message has been successfully
submitted to the mail server for delivery. When used in conjunction with the
OnRecipient and OnProgress events, this event can be used to track the delivery
of a message to multiple recipients. If the message was not delivered, either because
delivery was canceled in the OnRecipient event or because of an error, the
OnDelivered event will not fire.

The Address argument is a string which specifies the recipient email address.

The MessageSize argument is a long integer which specifies the size of the message
that was delivered.

Note that even though a message has been successfully delivered to the mail server,
it may not actually be delivered to the recipient. The server may accept the message
and then subsequently decide to reject or re-route the message based on its own
internal configuration. To confirm message delivery to the actual user, use the
delivery status notification options and/or set the ReturnReceipt property to an
address which will be notified when the message has been read.

See Also

OnProgress Event, OnRecipient Event, ReturnReceipt Property

OnError Event

The OnError event is generated when an error occurs.

Syntax

Private Sub object_OnError ([Index As Integer,] ByVal Error As Variant, ByVal
Description As Variant)

Remarks

The OnError event is generated when an error occurs while the component is
performing an operation. Visual Basic errors do not generate this event.

The Error argument specifies the last control error that has occurred. This
corresponds to the LastError property.

The Description argument is a string that describes the error. This corresponds to the
LastErrorString property.

See Also

LastError Property, LastErrorString Property

OnProgress Event

The OnProgress event is generated when retrieving or sending messages.

Syntax

Private Sub object_OnProgress ([Index As Integer,] ByVal MessageSize As
Variant, ByVal MessageCopied As Variant, ByVal Percent As Variant)

Remarks

The OnProgress event is generated when a message is being retrieved or sent. This
event can be used to update the user interface, such as displaying a progress bar
during the transaction. To cancel the current operation, the application can call the
Cancel method from within this event.

The MessageSize argument is a long integer which specifies the size of the message
in bytes that is currently being sent or received.

The MessageCopied argument is a long integer which specifies the number of bytes
that have been sent or received for the current message.

The Percent argument is an integer which specifies the completion percentage
between a value of 0 and 100.

See Also

Cancel Method

OnRecipient Event

The OnRecipient event is generated before a message is sent.

Syntax

Private Sub object_OnRecipient ([Index As Integer,] ByVal Address As Variant,
ByRef Cancel As Variant)

Remarks

The OnRecipient event is generated immediately before a message is sent to a
recipient. When used in conjunction with the OnProgress event, this event can be
used to track the delivery of a message to multiple recipients. If an error occurs
during the delivery of the message, the OnError event will fire.

The Address argument is a string which specifies the recipient email address.

The Cancel argument determines whether or not the message delivery is canceled
for the specified recipient. Setting this argument to a value of True causes the
SendMessage method to not deliver the message and continue on to the next
recipient. The default value for this argument is False, which indicates that the
message should be delivered.

Note that setting the Cancel argument to True is different from using the Cancel
method, which would cancel delivery of the message to all subsequent recipients as
well as the current recipient specified by the Address argument.

See Also

Cancel Method, OnProgress Event, OnError Event, SendMessage Method

OnTimeout Event

The OnTimeout event is generated when an operation is canceled.

Syntax

Private Sub object_OnTimeout ([Index As Integer])

Remarks

The OnTimeout event is generated after an operation times out. The amount of
time that the component will wait for an operation to complete can be controlled by
the Timeout property.

See Also

Timeout Property, OnCancel Event

―Error Codes―

Value Constant Description
10001 mailErrorNotHandleOwner Handle not owned by the current thread or

process
10002 mailErrorFileNotFound The specified file or directory does not exist
10003 mailErrorFileNotCreated The specified file could not be created
10004 mailErrorOperationCanceled The blocking operation has been canceled
10005 mailErrorInvalidFileType The specified file is a block or character device
10006 mailErrorInvalidDevice The specified device or address does not exist
10007 mailErrorTooManyParameters The maximum number of function parameters

has been exceeded
10008 mailErrorInvalidFileName The specified file name is too long or contains

invalid characters
10009 mailErrorInvalidFileHandle Invalid file handle passed to function
10010 mailErrorFileReadFailed Unable to read data from the specified file
10011 mailErrorFileWriteFailed Unable to write data to the specified file
10012 mailErrorOutOfMemory Out of memory
10013 mailErrorAccessDenied Access denied
10014 mailErrorInvalidParameter Invalid parameter
10015 mailErrorClipboardUnavailable The system clipboard is currently unavailable
10016 mailErrorClipboardEmpty The system clipboard is empty or does not

contain any text data
10017 mailErrorFileEmpty The specified file does not contain any data
10018 mailErrorFileExists The specified file already exists
10019 mailErrorEndOfFile End of file
10020 mailErrorDeviceNotFound The specified device could not be found
10021 mailErrorDirectoryNotFound The specified directory could not be found
10022 mailErrorInvalidBuffer Invalid memory address passed to function
10023 mailErrorBufferTooSmall The specified buffer is too small
10024 mailErrorNoHandles No more handles available to this process
10035 mailErrorOperationWouldBlock The specified operation would block
10036 mailErrorOperationInProgress A blocking operation is currently in progress
10037 mailErrorAlreadyInProgress The specified operation is already in progress
10038 mailErrorInvalidHandle The specified handle is invalid
10039 mailErrorInvalidAddress Invalid network address specified
10040 mailErrorInvalidSize Invalid message size, message is too long
10041 mailErrorInvalidProtocol Invalid network protocol specified
10042 mailErrorProtocolNotAvailable The specified network protocol is not available
10043 mailErrorProtocolNotSupported The specified protocol is not supported
10044 mailErrorSocketNotSupported The specified socket type is not supported
10045 mailErrorInvalidOption The specified option is invalid
10046 mailErrorProtocolFamily The specified protocol family is not supported
10047 mailErrorProtocolAddress The specified address is invalid for this

protocol family
10048 mailErrorAddressInUse The specified address is in use by another

process
10049 mailErrorAddressUnavailable The specified address cannot be assigned
10050 mailErrorNetworkUnavailable The networking subsytem is unavailable
10051 mailErrorNetworkUnreachable The specified network is unreachable
10052 mailErrorNetworkReset Network dropped connection on remote reset
10053 mailErrorConnectionAborted Network connection aborted by local host
10054 mailErrorConnectionReset Network connection aborted by remote host
10055 mailErrorOutOfBuffers No buffer space available
10056 mailErrorAlreadyConnected Connection already established with remote

host
10057 mailErrorNotConnected No connection established with remote host
10058 mailErrorConnectionShutdown Unable to send or receive data after

connection shutdown
10060 mailErrorOperationTimeout The specified operation has timed out
10061 mailErrorConnectionRefused The connection has been refused by the

remote host
10064 mailErrorHostUnavailable The specified host is unavailable
10065 mailErrorHostUnreachable The specified host is unreachable
10067 mailErrorTooManyProcesses Too many processes are using the networking

subsystem
10091 mailErrorNetworkNotReady The networking subsystem is not available
10092 mailErrorInvalidVersion The specified version is invalid or not

supported
10093 mailErrorNetworkNotInitialized The network subsystem has not been

initialized
10101 mailErrorRemoteShutdown The remote host has initiated a graceful

shutdown sequence
11001 mailErrorInvalidHostname The specified hostname is invalid or could not

be resolved
11002 mailErrorHostnameNotFound Non-authoritative hostname not found, retry

operation
11003 mailErrorHostnameRefused Unable to resolve hostname, request refused
11004 mailErrorHostnameNotResolved Unable to resolve hostname, no address for

specified host
12001 mailErrorInvalidLicense The license for this product is invalid
12002 mailErrorProductNotLicensed This product is not licensed to perform this

operation
12003 mailErrorNotImplemented This function has not been implemented on

this platform
12004 mailErrorUnknownLocalhost Unable to determine local host name
12005 mailErrorInvalidHostaddress Invalid host address specified
12006 mailErrorInvalidServicePort Invalid service port number specified
12007 mailErrorInvalidServiceName Invalid or unknown service name specified
12008 mailErrorInvalidEventId Invalid event identifier specified
12009 mailErrorOperationNotBlocking No blocking operation in progress on this

socket
12101 mailErrorSecurityNotInitialized Unable to initialize security interface for this

process
12102 mailErrorSecurityContext Unable to establish security context for this

session
12103 mailErrorSecurityCredentials Unable to open specified certificate store or

establish credentials
12104 mailErrorSecurityCertificate Unable to validate specified certificate
12105 mailErrorSecurityDecryption Unable to decrypt data stream
12106 mailErrorSecurityEncryption Unable to encrypt data stream
12201 mailErrorOperationNotSupported The specified operation is not supported
12202 mailErrorInvalidProtocolVersion Invalid application protocol version specified
12203 mailErrorNoServerResponse No data returned from server
12204 mailErrorInvalidServerResponse Invalid data returned from server
12205 mailErrorUnexpectedServerResponse Unexpected response code returned from

server
12206 mailErrorServerTransactionFailed Server transaction failed
12207 mailErrorServiceUnavailable The service is currently unavailable
12208 mailErrorServiceNotReady The service is not ready, try again later
12209 mailErrorServerResyncFailed Unable to resynchronize with server
12210 mailErrorInvalidProxyType Invalid proxy server type specified

12211 mailErrorProxyRequired Resource must be accessed through specified
proxy

12212 mailErrorInvalidProxyLogin Unable to login to proxy server using specified
credentials

12213 mailErrorProxyResyncFailed Unable to resynchronize with proxy server
12214 mailErrorInvalidCommand Invalid command specified
12215 mailErrorInvalidCommandParameter Invalid command parameter specified
12216 mailErrorInvalidCommandSequence Invalid command sequence specified
12217 mailErrorCommandNotImplemented Specified command not implemented on this

server
12218 mailErrorCommandNotAuthorized Specified command not authorized for the

current user
12219 mailErrorCommandAborted Specified command was aborted by the

remote host
12220 mailErrorOptionNotSupported The specified option is not supported on this

server
12221 mailErrorRequestNotCompleted The current client request has not been

completed
12222 mailErrorInvalidUsername The specified username is invalid
12223 mailErrorInvalidPassword The specified password is invalid
12224 mailErrorInvalidAccount The specified account name is invalid
12225 mailErrorAccountRequired Account name has not been specified
12226 mailErrorInvalidAuthenticationType Invalid authentication protocol specified
12227 mailErrorAuthenticationRequired User has already been authenticated
12228 mailErrorProxyAuthenticationRequired Proxy authentication required
12229 mailErrorAlreadyAuthenticated User has already been authenticated
12230 mailErrorAuthenticationFailed User has already been authenticated
12251 mailErrorNetworkAdapter Unable to determine network adapter

configuration
12252 mailErrorInvalidRecordType Invalid record type specified
12253 mailErrorInvalidRecordName Invalid record name specified
12254 mailErrorInvalidRecordData Invalid record data specified
12282 mailErrorInvalidMessagePart Message is not multi-part or an invalid

message part was specified
12283 mailErrorInvalidMessageHeader The specified message header is invalid or has

not been defined
12284 mailErrorInvalidMessageBoundary The multipart message boundary has not been

defined
12285 mailErrorNoFileAttachment The current message part does not contain a

file attachment
12286 mailErrorUnknownFileType The specified file type could not be determined
12287 mailErrorDataNotEncoded The specified data block could not be encoded
12288 mailErrorDataNotDecoded The specified data block could not be decoded
12289 mailErrorFileNotEncoded The specified file could not be encoded
12290 mailErrorFileNotDecoded The specified file could not be decoded
12291 mailErrorNoMessageText No message text
12292 mailErrorInvalidCharacterSet Invalid character set specified
12293 mailErrorInvalidEncodingType Invalid encoding type specified
12294 mailErrorInvalidMessageNumber Invalid message number specified
12295 mailErrorNoReturnAddress No valid return address specified
12296 mailErrorNoValidRecipients No valid recipients specified
12297 mailErrorInvalidRecipient The specified recipient address is invalid
12298 mailErrorNoMessageRelay Server will not relay messages
12299 mailErrorMailboxUnavailable Specified mailbox is currently unavailable
12300 mailErrorInvalidMailbox Specified mailbox is invalid

