DeFoxIII user guide

DeFoxIII is designed to protect applications created in VFP6-9 environment against decompilation.

Major Changes Since Previous Version (DeFoxII)

· Increased protection level.
· Added a set of functions that make it possible to create a demo version of application that may be upgraded to fully functional version through registration that ties the registered application to certain hardware characteristics of the customer’s computer.
Capabilities & Limitations

Three protection schemes are implemented in DeFoxIII:
· the A method is designed to protect executable applications (.exe and .app);

· the C method is designed to protect COM servers (.exe and .dll);

· and the P method is designed to protect program files (.fxp, .mxp and .qxp).

Executable .exe–files may be protected with either A method or C method, but if the .exe–file in question is not used as a COM server, it is recommended to use the A method, since there are certain additional protection layers that are not used in the C method. Registration functions may only be used in .exe–files protected with A method.
There are certain limitations on using protected APP applications. Protected APP applications may be called from .exe–files protected with the A method or from another protected APP application using the following command:

DO MyAPP.app [with par1, par2, ...]

If the APP application is meant to be used in a different way, for example:

SET PROCEDURE TO MyAPP.app

or

SET CLASSLIB TO MyClass IN MyAPP.app

or

DO MyProc IN MyAPP.app

then the protection system of the APP application to be used must be activated beforehand with the following command:

DO MyAPP.app WITH "NO_RUN"

It would be wise to put this command somewhere in the start–up procedures of your application.

In order to make both protected and unprotected files to behave in the same way, it is recommended to put the following code at the beginning of the APP's main program:

LPARAMETER m.par1

IF PCOUNT()=1 and TYPE("m.par1")="C" and m.par1=="NO_RUN"

RETURN
ENDIF
Everything said about the APP applications also applies to .exe–files protected with the A method. Aside from that, protected files may call unprotected applications and program files compiled with the Encryption option turned off. Protected program files may be called from other applications protected with any of A, C or P methods.

Due to protection techniques used in the A method, some of the VFP functions may return values different from the values they return in unprotected files and some commands may also produce different results. Those functions are:

· SYS(16) (SYS(16,0) is recommended instead);

· PROGRAM(-1);

· RETURN TO MASTER;

There are several other limitations:

· It is impossible to run protected files in the IDE environment.

· It is impossible to run protected applications when an active debugger is detected.

· Maximum size of any file included in a compiled module (.exe, .app or .dll) must not exceed 16 Mb.

If there are sufficiently many (more than 50) .exe and .app files called one from another, there may occur a situation where one of the protected modules would cause an error. In most cases this may be fixed by simply protecting this module anew.
Using DeFoxIII in Interactive Mode
When DeFoxIII is run without any parameters the main window is displayed where basic actions may be performed.

[image: image1.png]
To protect a file you should first choose the tab with the desired protection type: Application (exe), Application (app), COM server (exe, dll) or Program file (fxp, mpx, qpx). Then you should enter the name of the file that is to be protected into the Source file name field or choose it using the button next to the field. Similarly you should enter the name of the created protected file (Target file name). You may simplify this by using the arrow button that copies the contents of the Source file name field into the Target file name field. If it is necessary to add the registration functions to the protected application, you must click the Configure registration functionality of protected application button. That will open the Configure registration functionality window described below. The label to the right to the button indicates whether registration functions will be added to the protected application or not. Having configured the protection options click the Protect button to write the save the protected application using the file name entered into the Target file name field. If the contents of the Source file name and Target file name fields are identical, the source file will be replaced with the protected version (make sure to have a backup if this is the case). If any errors occur during the protection process a message describing the nature of the problem will be displayed and a protected version of the file will not be written.
Adding Registration Functions
Clicking the Configure registration functionality of protected application button displays the window pictured below:
[image: image2.png]
If you choose the Add registration functionality to protected application option the settings for the application registration will become enabled. Put the name of your company in the Company name field. This value will be used in a registry key:
HKEY_LOCALE_MACHINE\Software\<Company name>

Value from the Application name field will be used in a registry key too:
HKEY_LOCALE_MACHINE\Software\<Company name>\<Application name>

You must enter a password into the corresponding field that will act as a unique identifier of your application. The password must be from 6 to 30 characters long, and you will be prompted for it every time you generate a registration key for your application. Password must be entered twice to prevent typing errors. Attention! If you forget your password, you will not be able recover it. Any person knowing the password will be able to generate registration keys for your application.
Next option group makes it possible to choose the way the list of the files to be blocked in a demo version of your application will be defined. If the first option is selected then during the protection process a window will appear where you will be able to select blocked files.
[image: image3.png]
You will see a list of all the files included in your application, except the file set as main (it will be excluded since it cannot be blocked). You must check the files that should be blocked in the demo version of your application. These files will be encrypted using a special protection scheme, and will only be decryptable using the information from a properly generated registration key. Calling these files in a demo version will produce an error. After the files to be blocked are selected you should click the Continue button, but first it is recommended to use the Save filelist button to save the list of blocked files. The saved list may be used afterwards for loading this information for further protection attempts.
If the Use list of files to be blocked from the selected file option is selected the field for the name of a saved file list becomes enabled. In this case after you click the Protect button the list of the files to be blocked will be loaded from the specified file without any further user intervention. If the third option in the option group is selected the list of files to be blocked will be loaded from the specified file, but during the protection process you will be given an option to modify it.
In the Registration functionality configuration window there are the Save configuration and Load configuration buttons that may be used to save the current configuration to a file or load a file containing a previously saved configuration. Configuration files created with the Save configuration button may also be used while running DeFoxIII in command line mode.
Note: you should be extremely careful using the configuration files. While passwords are stored in configuration files in encrypted form, they are not completely secure, therefore you should take all possible steps to prevent unauthorized access to configuration files.
Description of Registration Functions
If during the protection process the registration functions were added to your application, then your application may utilize the following five functions provided by DeFoxIII. Note that before these functions may be used the following statement must be executed:
Set Procedure to DeFox_Proc

Here is the detailed description of these functions:
1. A function to check whether the application was registered:
CheckRegistered(@m.lcRegKey)

This function checks whether the application was registered, and in case it was puts the value of the key used to register the application in m.lcRegKey variable. The registration check should be considered successful if it returns 0 or one of value in the 1084 – 1087 range.
The function may return one of the following values:

0 – application is registered.
24 – can’t read the MAC value from the registry.

26 – can’t read the HDD value from the registry.
27 – can’t read the expiration date value from the registry.
28 – can’t read CheckSum 1 value from the registry.
29 – can’t read CheckSum 2 value from the registry.
30 – can’t read CheckSum 3 value from the registry.
31 – incorrect CheckSum 1 value.

32 – incorrect CheckSum 2 value.
33 – incorrect CheckSum 3 value.
80 – expiration date value in the registry is empty.

81 – real HDD string value differs from the value in registry.

82 – incorrect real HDD string value.

83 – incorrect HDD string value in the registry.

1084 – warning: real HDD string value doesn’t contain a serial number.

1085 – warning: HDD string value in the registry doesn’t contain a serial number.

1086 – warning: real HDD string value doesn’t contain Model, Revision and Serial.

1087 – warning: HDD string value in the registry doesn’t contain Model, Revision and Serial.

90 – real MAC value differs from the value in the registry.

91 – real MAC value differs from the value in the registry + error 81.

92 – real MAC value differs from the value in the registry + error 82.
93 – real MAC value differs from the value in the registry + error 83.
94 – real MAC value differs from the value in the registry + warning 1084.
95 – real MAC value differs from the value in the registry + warning 1085.
96 – real MAC value differs from the value in the registry + warning 1086.
97 – real MAC value differs from the value in the registry + warning 1087.
201 – can’t read registration key from the registry.

202 – registration key value format in the registry is invalid.
203 – incorrect registration key value in the registry.

101 – activation procedure for registry key from the registry failed.
Apart from that if the function returns a value greater than 10000, it means that one or more VFP error occurred during the execution. You may get the last error code by subtracting 10000 from the returned value.

Remarks: this function must be executed at the start of your application. In case of success the function activates the module needed to decrypt the files blocked in demo version. Before this function is executed calling the blocked files will produce an error. A few words on warnings: in some rare cases there it might be impossible to get all the hardware traits of a hard drive. E.g., sometimes you can’t get the serial number of a SCSI HDD if the user doesn’t have the local administrator rights. Therefore the real value of the HDD string may differ from that in registry. If these two strings do not contradict one another, you will get a warning instead of error and the validation process will continue.
2. A function for entering the registration key:
EnterRegistrationKey(m.lcRegKey)

This function accepts a value of registration key as a parameter, attempts to activate it and in case of success writes its value to the registry. The function should be considered to have succeeded if it returns 0 or a value in the 1084 – 1087 range.
The function may return one of the following values:
0 – registration key successfully written to the registry.

24 – can’t read the MAC value from the registry.

26 – can’t read the HDD value from the registry.

27 – can’t read the expiration date value from the registry.

28 – can’t read CheckSum 1 value from the registry.

29 – can’t read CheckSum 2 value from the registry.

30 – can’t read CheckSum 3 value from the registry.

31 – incorrect CheckSum 1 value.

32 – incorrect CheckSum 2 value.

33 – incorrect CheckSum 3 value.

80 – expiration date value in the registry is empty.

81 – real HDD string value differs from the value in registry.

82 – incorrect real HDD string value.

83 – incorrect HDD string value in the registry.

1084 – warning: real HDD string value doesn’t contain a serial number.

1085 – warning: HDD string value in the registry doesn’t contain a serial number.

1086 – warning: real HDD string value doesn’t contain Model, Revision and Serial.

1087 – warning: HDD string value in the registry doesn’t contain Model, Revision and Serial.

90 – real MAC value differs from the value in the registry.

91 – real MAC value differs from the value in the registry + error 81.

92 – real MAC value differs from the value in the registry + error 82.

93 – real MAC value differs from the value in the registry + error 83.

94 – real MAC value differs from the value in the registry + warning 1084.

95 – real MAC value differs from the value in the registry + warning 1085.

96 – real MAC value differs from the value in the registry + warning 1086.

97 – real MAC value differs from the value in the registry + warning 1087.

101 – activation procedure for given registration key failed.
301 – can’t write to registry section HKEY_LOCAL_MACHINE\Software. Access denied.
302 – registration key value format is invalid.

303 – incorrect registration key value.
304 – can’t write registration key value to the registry.

Apart from that if the function returns a value greater than 10000, it means that one or more VFP error occurred during the execution. You may get the last error code by subtracting 10000 from the returned value.

Remarks: this function must be executed during the registration procedure after the user enters a registration key in the corresponding field. User must have the rights to write to registry section HKEY_LOCAL_MACHINE\Software for this function to succeed.
3. A function for storing the registration information in the registry:
SetRegistryInfo(m.ldExpDate)

This function gathers the information about the immutable traits of some of the user’s hardware and writes this information together with several checksums to the registry key:
HKEY_LOCALE_MACHINE\Software\<Company name>\<Application name>

Function accepts a demo version expiration date as a parameter and writes it to the registry as well.
This function may return one of the following values:
0 – information has been successfully written to the registry.
1 – can’t write to registry section HKEY_LOCAL_MACHINE\Software. Access denied.
2 – can’t create a registry key.

3 – can’t write the Attention value to the registry.
4 – can’t write the MAC value to the registry.
5 – can’t get HDD hardware traits.
6 – can’t write the HDD value to the registry.
7 – can’t write expiration date to the registry.
8 – can’t write CheckSum 1 to the registry.
9 – can’t write CheckSum 2 to the registry.
10 – can’t write CheckSum 3 to the registry.

Remarks: this function should be called in two cases: first, if your application is running for the first time and registration information is not present in the registry, and, secondly, if this information was corrupted for some reason. If the application was just registered and then some of the registration entries were corrupted but a correct value of registration key is present then there is a significant chance of registration being recovered automatically simply by calling this function, but only in case the hardware configuration has not been changed since registration. If your application demo version doesn’t require an expiration date, simply set it to, say, {^2099-01-01}. User must have the rights to write to registry section HKEY_LOCAL_MACHINE\Software for this function to succeed.
4. A function for getting the registration information from the registry:
GetRegistryInfo(@m.lcText)

This function reads the registration information written by SetRegistryInfo function from the registry. If the function succeeds the registry information will be written to m.lcText variable.
This function may return one of the following values:
0 – information has been successfully read from the registry.
24 – can’t read the MAC value from the registry.

26 – can’t read the HDD value from the registry.

27 – can’t read the expiration date value from the registry.

28 – can’t read CheckSum 1 value from the registry.

29 – can’t read CheckSum 2 value from the registry.

30 – can’t read CheckSum 3 value from the registry.

31 – incorrect CheckSum 1 value.

32 – incorrect CheckSum 2 value.

33 – incorrect CheckSum 3 value.

Remarks: this function should be used to retrieve the information that will be written to the registration file. This file will be used in DeFoxIII to generate a registration key afterwards. This will be described more closely in the Registration keys generation section below.
5. A function to check for demo version expiration:
CheckExpired(@m.ldExpDate)

This function checks the demo version expiration by comparing the current date with the expiration date written to the registry. Corresponding CheckSums are checked as well. If the function succeeds the expiration date will be written to the m.ldExpDate variable.
The function may return one of the following values:
0 – the demo version hasn’t expired yet.

41 – can’t read from the registry.
42 – incorrect CheckSum value.
43 – demo version expired.
Remarks: this function may be used to assist in creating a demo version of your application that expires once a certain period of time has passed since the installation. This does not guarantee that the expiration will remain in force. In case the registration information is deleted and the application is reinstalled a new expiration date will be generated and stored in the registry. To prevent changing the expiration date in such a way you may want to store the expiration date somewhere else as well, preferably within your application data in an encrypted form. When the application is started you should compare these two dates and issue a warning about possible tampering with the registry in case they differ. Also you must take in mind that the CheckExpired function compares the date in registry with the current date set on the computer’s internal clock. By changing the current date the user may achieve a false negative. You might want to check for correct application execution sequence to prevent this exploit. This may be done by saving the current date in your application data comparing it with the date of the previous execution upon application startup.
Registration Keys Generation
If you click the Registration keys generation button in the main window of DeFoxIII the following dialog window will be displayed:
[image: image4.png]
First you should load the registration information file created by your application on user’s computer. This file must contain the information returned by the GetRegistryInfo function. Your application is allowed to add extra text information to this file. This text must be added at the beginning of the file and may contain information identifying the user, his company etc. In fact the registration information file may contain just the last line of the text returned by the GetRegistryInfo function. Note that this is not recommended, since while this information is sufficient to generate a registration key, the checksums cannot be verified in this case.
After the registration information file is loaded you should click the Verify registration information button to check that checksums received correspond to all the other information in the registration file. The results will be displayed and if checksums were found in the last row they will be copied to the CheckSums field and the Generate registration key button will become enabled.
After that you should enter password that has been used during the protection procedure of your application in the Password and Confirm password fields and click the Generate registration key button. The newly generated registration key will appear in the Registration key field.
[image: image5.png]
Now it may be copied to the clipboard and sent to the user.
Running Program From Command Line

When running the program from the command line use following command line format:
DeFoxIII [A|C|P] [C/RCF_FileName] SourceFileName [TargetFileName]

The A, C or P switch indicates which protection method DeFoxIII should use. The А (Application) is the default. The [C/RCF_FileName] switch is used if you want to add registration functions to your application. RCF_FileName must be the name of the configuration file saved from the registration configuration window. If Target_file_name is not used, it is considered that Target_file_name is the same as Source_file_name. Using command line in the AfterBuild method of Project hook, you must remember that DeFoxII must be ran as a separate process, so it can’t be used in the following way:
Do DeFoxIII.exe with ’A’, ’MyFile.exe’

You must use Run command or API function ShellExecute. If there is necessity in AfterBuild method to wait until DeFoxII finishes its work, then you may use WHScript or API functions CreateProcess and WaitForSingleObject to achieve result.

Creating Application That Uses Registration Functions
Along with DeFoxIII a small application (Sample.zip) is provided to demonstrate how the registration functions may be used. This application consists of project files Sample.prj and Sample.pjx, configuration file config.fpw, main program file main.prg and four forms mainform, hwd, hwr and enter_key.
At the beginning of main program file the application registration is checked using the CheckRegistered function. In case of success (function returns 0 or 1084 – 1087) the main form with the corresponding parameters is displayed. If the application registry information is absent or corrupted (errors 20 – 39), the user will be prompted whether he wants to create/restore the registry information, and if the user agrees an attempt will be made to set the registry information using the SetRegistryInfo function. The registry information is then verified using the GetRegistryInfo function. Finally, a check to see whether the application has expired or not is made. If the application has not expired yet the main form is loaded in the demo mode.
[image: image6.png]
There are four buttons on the form (besides the Exit button). The first one is functional both in demo version and registered version. The second is functional only in registered version. If you click it in the demo version you will receive the corresponding message. Note that if one removes the code that checks the version from the click method of this button then clicking this button in demo version will produce a Not a table error. This is because the application will not be able to decrypt the needed form file. Upon clicking the Create registration file button the GetRegistryInfo function will be called and the information returned by it will be written to the RegistrationFile.txt file. This file may be used in DeFoxIII to generate a registration key afterwards. The password for this application is "zzzzzz" (without quotes). The registration key obtained in this way may be entered in the corresponding field on the form loaded after the Enter registration key button is clicked. When the Register button is clicked the EnterRegistrationKey function is called that will try to register the application.
There are some other files in this application: defox_proc.prg program file, which is included in the project with the Excluded option and is denoted to make it possible to test application in IDE environment; pr_hook class library; Sample.rcf and Sample.rfl configuration files; and rpw.prg program file. There is only one class in the class library created on the ProjectHook base class with only one modified method AfterBuild. This method uses the rpw.prg program to call DeFoxIII from the command line:
DeFoxIII.exe E C/sample.rcf sample.exe sample_.exe
and waits till it finishes its job. It is assumed that DeFoxIII.exe is in the same directory as the project or one level up. The registration configuration is taken from the Sample.rcf file (note: the password is stored there in encrypted form) and the list of the files to be blocked in the demo version is taken from the Sample.rfl file. The protected application with the registration functions will be written to the Sample_.exe file.
The Sample.pjx project may be compiled in any VFP version from 6 to 9.
Technical Information

DeFoxIII supports the following VFP versions:

· VFP6SP5;

· VFP7SP0;

· VFP7SP1;

· VFP8SP0;

· VFP8SP1;

· VFP9SP0;

· VFP9SP1.

Note: Support for VFP9SP2 will be added once it has been officially released.

DeFoxIII and sample protected programs were tested mostly on Windows XP SP2. Certain tests were also performed on Windows 98 SE, Windows 2000 and Windows 2000 Server.

DeFoxIII and protected programs should also work on Windows ME.

Unfortunately we don't have any information about running DeFoxIII and protected programs on Windows 2003 Server and Windows Vista.

It is extremely likely that DeFoxIII and protected programs will not run on Windows 95 and Windows NT 4.0.

Acknowledgements
The author would like to thank all the people who contributed to his work on this product.

Especially must be mentioned Josh Assing, Aming, Cata and Igor Korolev.

Please send your comments, suggestions and bug reports to defox@grada.lv. The author will be grateful for any feedback. All received messages will be read with great attention and, if possible, used to improve future versions of DeFoxIII.

